PLATINUM® DDL

www.DanaherMotion.com

The Direct Drive Linear (DDL) Story

What is direct drive? Very simply it is the direct coupling of a linear motor (such as the Kollmorgen PLATINUM® DDL) to the driven load. With this configuration, all mechanical transmissions, such as ball/lead screws, rack & pinions, belts/pulleys, and gearboxes are eliminated. This in turn eliminates backlash and compliance and other problems associated with these mechanical transmissions.

The DDL Benefits:

- ZERO maintenance
- No ball screws, gearboxes, rack & pinions, belts/pulleys
- Zero backlash and compliance
- High stiffness
- High positional accuracy
- Compact mechanical assembly
- Reduced parts count in machine
- Very smooth velocity
- Quiet operation

The PLATINUM DDL linear motor line provides a new dimension in performance with higher throughput, accuracy, and zero maintenance.

Kollmorgen PLATINUM DDL

Kollmorgen supplied its first linear motors in the late 1970's for use in precision X-Y tables and coating systems. These were brush DC motors using the Kollmorgen patented push-through commutator bar method. This led to development in the early 1980's of the brushless versions of the linear motor which were used in film processing applications where smooth, high stiffness, linear motion was required. During the past 10 years, advances in permanent magnet material, power semiconductors, and microprocessor technology have been the enablers for increased performance and lower costs for linear motors.

These developments have been refined into the Kollmorgen PLATINUM DDL product line of easily applied, cost effective linear motor components. The product line consists of two fundamental constructions, Ironless and Ironcore. The Ironless motors have no attractive force between the frameless components and have Zero cogging for ultra smooth motion. The Ironcore motors provide the highest force per frame size. They feature a patented anti-cogging design which yields extremely smooth operation from these high force motors.

Standard Features:

Ironless:

- Peak force 60 to 1600 N (13.6 to 360 lbf)
- Continuous force 21 to 450 N (4.6 to 101 lbf)
- · Zero cogging
- Zero attractive force
- Smooth motion for speed as low as 1 micron/second (0.00004 in/sec)
- Low mass coil assembly for high acceleration

Ironcore:

- Peak force IC series: 190 to 15625 N (43 to 3513 lbf)
- Continuous force IC series: 73 to 12023 N (16 to 2703 lbf)
- Peak force ICD series: 170 to 1130 N (38 to 254 lbf)
- Continuous force ICD series: 57 to 315 N (13 to 71 lbf)
- Patented anti-cogging technique for minimal cogging without magnet skewing
- High motor constant (Km)
- · High force density
- ICD Series Advantage:
 - Very low profile
 - Low attraction force
 - Suitable to replace many Ironless applications

All Motors:

- Zero contact, zero maintenance, brushless design
- 3 phase sinusoidal commutation
- Peak accelerations easily above 10 g's
- High position accuracy and resolution
- Very low settling time
- Low thermal losses
- Modular magnet design

Standard Options:

- Hall effect feedback
- Thermal protection
 - Thermistor
 - Thermostat (Ironcore)
- Supplemental air or water cooling (Ironcore)
- Cable options
- Magnet way covers for easy cleaning (Ironcore)
- FM approved, hazardous environment

Introduction

Panes

How to Use this Data Publication

This data publication makes the selection of a high performance linear motor simple! It includes a wide variety of linear motor components and cables that will adapt to your application needs. The linear motor selection guide at the back of this book is organized to lead you to the right motor quickly. The magnet ways for the Ironless, ICD and Ironcore motors are presented at the end of their respective sections so you can match any coil with any length of magnet assembly. To complete your sizing, use the model number ordering sheet at the back of this publication to build your part number as you size the motor.

Easy Selection process:

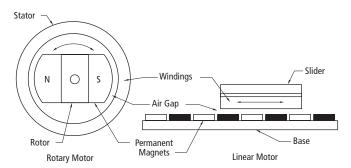
- Determine peak and continuous force required for your applications (see our applications section on pages 60-64 or use MOTIONEERING®, Danaher Motion's sizing and selection software)
- 2. Use the motor selection guide on pages 65 and 66 of this Data Publication to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using page 67

Kollmorgen PLATINUM DDL Motors are Manufactured under one or more of the following patents:

4,369,383 4,644,199 4,749,921 5,910,691 5,411,808 5,519,266 5,642,013 6,160,327 WO 96/15574 and others.

Kollmorgen PLATINUM DDL motors have been reviewed, tested, and found to be in conformity to the following standards: EN 60034, EN 60204-1, IEC 34-1. Product has been reviewed per EN 60950, EN 60529, IEC 721-3, NEMA MG7, UL1004, UL547, and UL674.

The Kollmorgen PLATINUM DDL motors comply with the Low Voltage Directive 73/23/EEC for installation in a machine. Safety depends upon installing and configuring Motor per the manufacturer's recommendations. The machine in which this product is to be installed must conform to the provisions of EC directive 89/336/EEC. The installer is responsible for ensuring that the end product complies with all the relevant laws in the country where the equipment is installed.


The Data Publication is organized in the following sections:

Linear Motor Technology	4-5
Ironless technical data electrical/mechanical specifications mechanical outlines of coil assemblies	6-14
Ironless magnet ways technical data mechanical outline of magnet ways typical installation of magnet assemblies	14-17
ICD technical data electrical/mechanical specifications mechanical outlines of coil assemblies	18-24
ICD magnet ways technical data mechanical outline of magnet ways typical installation of magnet assemblies	22-24
Ironcore technical data (non-cooled) electrical/mechanical specifications mechanical outlines of coil assemblies	25-39
Ironcore technical data (water cooled) electrical/mechanical specifications mechanical outlines of coil assemblies	40-53
Ironcore magnet ways technical data mechanical outlines of magnet ways typical installation of multiple magnet ways	54-56
High Flex Cable Sets and Ordering Information	57-58
Motor Wiring and Phasing diagrams	59
Application Sizing Information	60-64
Linear Motor Selection Charts	65-66
Model Numbering System for Coils, Hall Effects, Magnet Ways, and Ordering Information	67

Introduction Kollmorgen PLATINUM® DDL

What is a Linear Servomotor?

The Kollmorgen PLATINUM® DDL Series motors are frameless permanent magnet, three phase brushless servomotors. Fundamentally, a linear motor is a rotary motor that is rolled out flat.

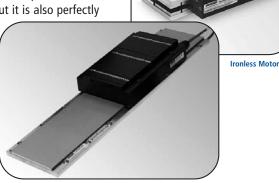
Rotary Motor Rolled Out Flat

The two primary components of permanent magnet brushless rotary motors are the stator (primary coils) and the rotor (secondary or rotating magnets). In brushless linear motors the rotor is rolled out flat to become the magnet track (also called the magnet way). The primary coils of the rotary motor are rolled out flat to become the coil assembly (also sometimes called the slider). In most brushless linear motor applications it is typical for the magnet way to be stationary and the coil assembly to be in motion, because of the relative masses of the two components. But it is also perfectly

acceptable and sometimes advantageous to reverse this arrangement. The basic electromagnetic operating principles are the same in either case and are identical to those of a rotary motor.

Two types of linear motors are available, Ironcore and Ironless. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the

generated force, with a single sided magnet way. Using a patented electromagnetic design, Kollmorgen PLATINUM DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be


wound on. Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to provide a flux return path for the magnetic circuit.

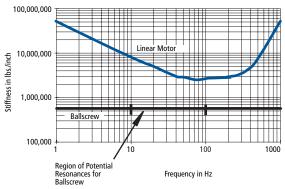
Feedback Types:

All brushless motors require feedback for commutation. The conventional rotary motor typically utilizes a resolver mounted on the rear of the motor or Hall effect devices mounted integrally in the coil windings. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the PLATINUM DDL series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

For exceptionally smooth motion requirements, sinusoidal drive electronics such as the Kollmorgen ServoStar® series, using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. As an alternative, it is

typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers, such as the Kollmorgen ServoStar Digital amplifier, to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup. Other types of feedback used on linear motor applications include linear Inductosyns, laser interferometers, and LVDT's.

Ironcore Motor


PLATINUM® DDL Kollmorgen Introduction

Advantages of Linear motors:

High Stiffness

In a linear motor system the motor is connected directly to the moving load. Therefore, there is no backlash and practically no compliance between the motor and the load. When the motor moves the load moves instantly. Shown in the graph is a comparison showing the very high dynamic stiffness of a Kollmorgen ironcore linear motor vs. a typical ground ball screw.

Ironcore model 22-100 Stiffness vs. Ballscrew

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second (200 in./sec.) or less than 1 micron per second (.00004 in./sec.) are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second (20-30 in./sec.) because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than ± 0.01% speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5g's are quite typical for the larger motors and accelerations exceeding 10g's are easily achievable for smaller motors.

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of the Kollmorgen PLATINUM® DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

Unlimited Travel

Kollmorgen Platinum DDL series magnet ways are made in 5 modular sections: 64mm, 128mm, 256mm, 512mm and 1024mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1 millimeter (0.04 inches) or 100 meters (330 feet), the PLATINUM DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler

Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.8mm airgap (0.031 inches) for the ironcore design and 0.5mm airgap (0.020 inches) for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than sufficient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine Tool Measurement/Inspection
Drilling Coordinate Measurement Machines
Milling Electronic Assembly
Grinding Pick-and-place machines

Laser cutting
Cam grinding
Cam grinding
Semiconductor

Nation handling presses

P.C. board invention

Wafer handling process PC board inspection, drilling Wafer inspection

Wafer slicing Other applications include: Tab bonding Flight Simulators

Tab bonding Flight Simulators
Wire bonding Acceleration sleds

In implantation Catapult

Lithography G-Force m

Lithography G-Force measurement Textile

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Carpet tufting

06 Series Ironless - Non-cooled

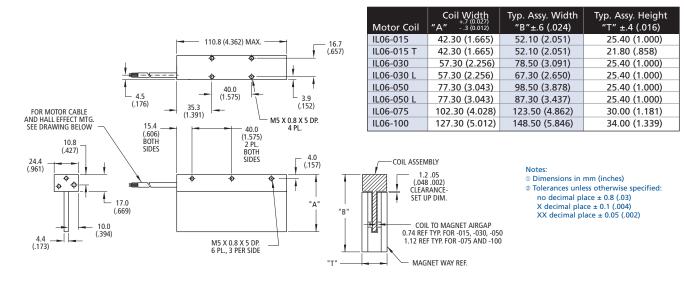
Rated Performance	Symbol	Units	IL06	-015	IL06	-030	IL06	-050	IL06	-075	IL06-100		
Peak force	Fp	N	6	0	1.	20	20	00	30	00	4	00	
		lbf	13	13.6		27		45		8	ç	00	
Continuous force @ Tmax	Fc	N	2	1	3	8	6	1	87		1	13	
see note ①		lbf	4	.6	9	9	1	4	1	9	2	25	
Motor constant @ 25°C	Km	N/√W	3	.3	5	.6	8	.0	10).2	12.1		
Max. Cont. power dissipation	Pc	W	5	3	6	55	8	3	10)1	1.	21	
Electrical Specifications													
		Winding Code	A1	A4	A1	A4	A1	A4	A1	A4	A1	A4	
Peak current	lp	Arms	7.2	14.4	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0	
Continuous Current @ Tmax	Ic	Arms	2.5	4.9	2.3	4.5	2.1	4.3	2.0	4.1	2.0	4.0	
Electrical resistance @ 25°C±10%	Rm	Ohms L-L	4.2	1.1	6.1	1.5	8.6	2.2	11.7	2.9	14.7	3.7	
Electrical inductance ±20%	L	mH L-L	0.50	0.13	1.30	0.33	3.00	0.75	5.00	1.25	7.00	1.75	
Back EMF constant @ 25°C±10%	Ke	Vpeak/m/s L-L	6.9	3.4	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3	
		Vpeak/in/sec L-L	0.17	0.09	0.35	0.17	0.59	0.30	0.89	0.44	1.18	0.59	
Force constant @25°C±10%	Kf	N/Arms	8.4	4.2	16.8	8.4	28.5	14.3	42.8	21.4	57.0	28.5	
		lbf / Arms	1.9	0.9	3.8	1.9	6.4	3.2	9.6	4.8	12.8	6.4	
Mechanical Specifications													
Coil Assembly Mass ±15%	Mc	kg	0.	23	0.	27	0.	32	0.38		0.45		
		lbs	0	.5	0	.6	0.7		0	0.8 1		.0	
Magnetic Way Type			M	w	М	W	M	W	MW	/075	MW	/100	
			015	015T	030	030L	050	050L					
Magnetic Way Mass ±15%	Mw	kg/m	5.1	4.2	9.4	7.3	12.2	10.2	18	3.9	27	7.3	
		lb/in	0.28	0.23	0.51	0.40	0.68	0.56	1.0	05	1.	51	
Figures of Merit & Additional	Data												
Electrical time constant	Te	ms	0.	12	0.	.21	0.	35	0.	43	0.	48	
Max.Theoretical Acceleration	Amax	g's	26.8		45	5.2	63	3.6	80	0.6	90).7	
Magnetic attraction	Fa	kN	0		(0		0		0	()	
		lbf		0	(0	0			0	()	
Thermal Resistance													
- coils to external structure	Rth	°C/Watt	1.	97	1.	61	1.26		1.04		0.87		
Max. Allowable Coil Temp.	Tmax	°C	1:	30	13	30	1.	30	1:	30	13	30	

Notes:

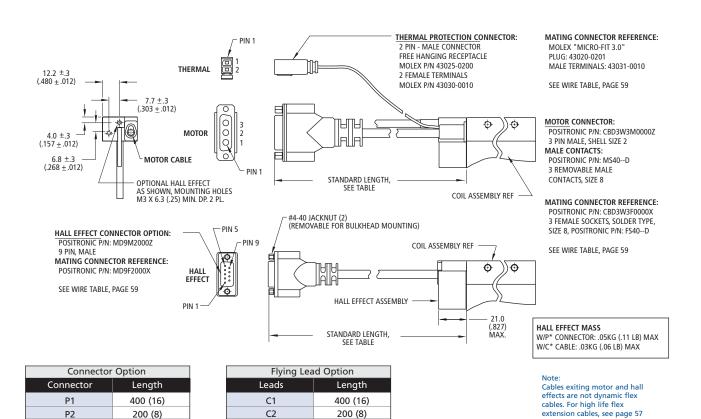
- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:
 Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
 The RMS current needed to produce this force is simply Fc divided by the force constant Kf
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.


: 540

PLATINUM® DDL Kollmorgen Ironless Motors


IL06-xxx

Р3

100 (4)

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

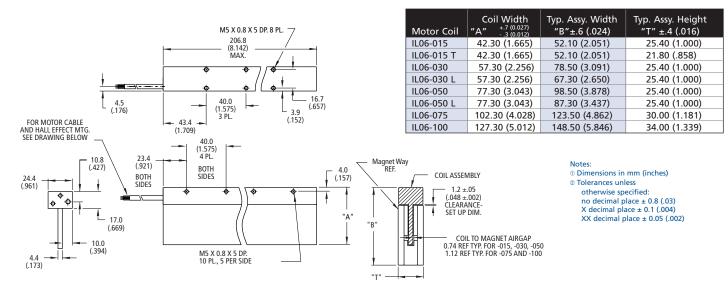
100 (4)

C3

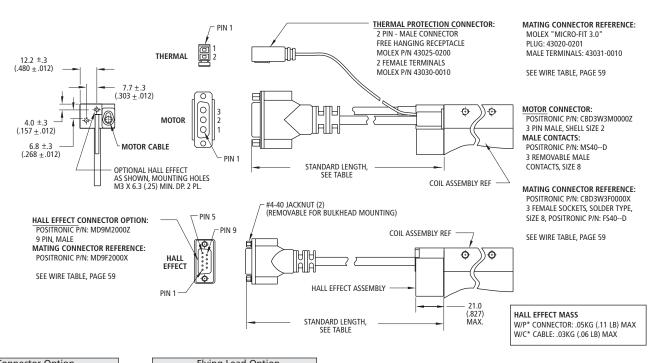
Tel

12 Series Ironless - Non-cooled

Rated Performance	Symbol	Units	II	L 12-0 1	15	I	L12-0	30	II	L12-05	0	II	_12-07	' 5	IL12-100		
Peak force	Fp	N		120			240			400			600		80	00	
		lbf		27		54			90			135			18	30	
Continuous force @ Tmax	Fc	N		41			76			122			174			26	
see note ①		lbf		9			17			28		39			51		
Motor constant @ 25°C	Km	N/√W		4.8			7.8			11.3		14.5			17.2		
Max. Cont. power dissipation	Pc	W		107			131			167			202		24	12	
Electrical Specifications																1	
		Winding Code	A1	A2	A4	A1	A2	A4	A1	A2	A4	A1	A2	A4	A2	A4	
Peak current	lp	Arms	7.1	14.3	28.6	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1	
Continuous Current @ Tmax	lc	Arms	2.4	4.9	9.8	2.3	4.5	9.0	2.1	4.3	8.6	2.0	4.1	8.1	4.0	7.9	
Electrical resistance																	
@ 25°C±10%	Rm	Ohms L-L	8.5	2.1	0.5	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8	
Electrical inductance ±20%	L	mH L-L	1.00	0.25	0.06	2.60	0.65	0.16	6.00	1.50	0.38	10.00	2.50	0.63	3.50	0.88	
Back EMF constant	Ke	Vpeak/m/s L-L	13.7	6.9	3.4	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3	
@ 25°C±10%		Vpeak/in/sec L-L	0.35	0.17	0.09	0.70	0.35	0.17	1.18	0.59	0.30	1.77	0.89	0.44	1.18	0.59	
Force constant @ 25°C±10%	Kf	N/Arms	16.8	8.4	4.2	33.7	16.9	8.4	57.0	28.5	14.3	85.5	42.8	21.4	57.0	28.5	
		lbf / Arms	3.8	1.9	0.9	7.6	3.8	1.9	12.8	6.4	3.2	19.2	9.6	4.8	12.8	6.4	
Mechanical Specification	ıs																
Coil Assembly Mass ±15%	Мс	kg		0.35		0.42			0.52			0.65			0.77		
		lbs		0.8		0.9			1.1			1.4			1.7		
Magnetic Way Type				MW			MW		MW			MW075			MW100		
			015	5 0	15T	03	0	030L	050) ()50L						
Magnetic Way Mass ±15%	Mw	kg/m	5.1	4	1.2	9.4	4	7.3	12.2	2	10.2		18.9		27	7.3	
		lbs/in	0.2	8 0	.23	0.5	1	0.40	0.68	3	0.56		1.05		1.	51	
Figures of Merit & Addit	ional Data																
Electrical time constant	Te	ms		0.12			0.21			0.35			0.43		0.	48	
Max.Theoretical Acceleration	Amax	g's	35.0			58.2			78.4			94.1		10	6.0		
Magnetic attraction	Fa	kN	0		0		0			0			0				
		lbf		0			0		0				0		()	
Thermal Resistance																	
- coils to external structure	Rth	°C/Watt		0.984			0.804	1	0.629			0.519			0.433		
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			130		13	30	


Notes:

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:
 Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.


 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

PLATINUM® DDL Kollmorgen **Ironless Motors**

IL12-xxx

Termination and Hall Effect Options

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
Fo	100 (4)							

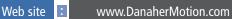
Flying Lead Option									
Length									
400 (16)									
200 (8)									
100 (4)									

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and nties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion

> : 540 633 • 3400 Web site www.DanaherMotion.com

18 Series Ironless - Non-cooled


Rated Performance	Symbol	Units		IL18	-015			IL18	-030		IL18-050					
Peak force	Fp	N	180				36	50			60	00				
		lbf		4	10			8	1		135					
Continuous force @ Tmax	Fc	N		6	52			11	14		184					
see note ①		lbf		1	4			2	6		41					
Motor constant @ 25°C	Km	N/√W		5	.8			9	.7			13	.8			
Max. Cont. power dissipation	Pc	W		1	60			19	96			25	51			
Electrical Specifications																
		Winding Code	A1	A2	А3	A4	A1	A2	A3	A4	A1	A2	А3	A4		
Peak current	lp	Arms	7.1	14.2	21.3	42.6	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1		
Continuous Current @ Tmax	lc	Arms	2.4	4.9	7.3	14.7	2.3	4.5	6.8	13.6	2.2	4.3	6.5	12.9		
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	12.7	3.2	1.4	0.4	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7		
Electrical inductance ±20%	L	mH L-L	1.50	0.38	0.17	0.04	3.80	0.95	0.42	0.11	9.00	2.25	1.00	0.25		
Back EMF constant	Ke	Vpeak/m/s L-L	20.7	10.3	6.9	3.4	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6		
@ 25°C±10%		Vpeak/in/sec L-L	0.52	0.26	0.17	0.09	1.05	0.52	0.35	0.17	1.77	0.89	0.59	0.30		
Force constant @ 25°C±10%	Kf	N/Arms	25.3	12.7	8.4	4.2	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3		
		lbf/Arms	5.7	2.8	1.9	0.9	11.4	5.7	3.8	1.9	19.2	9.6	6.4	3.2		
Mechanical Specification	s															
Coil Assembly Mass ±15%	Mc	kg		0.	46		0.57				0.72					
		lbs		1	.0			1	.3		1.6					
Magnetic Way Type				M	w			М	w			M	W			
			0.	15	01	5T	03	30	03	0L	0!	50	05	0L		
Magnetic Way Mass ±15%	Mw	kg/m	5	.1	4	.2	9	.4	7	.3	12	2.2	10).2		
		lbs/in	0.	28	0.	23	0.	51	0.	40	0.	68	0.	56		
Figures of Merit & Addit	onal Data															
Electrical time constant	Te	ms		0.	12			0	21			0.	35			
Max.Theoretical Acceleration	Amax	g's	40.2			64.5					84	1.9				
Magnetic attraction	Fa	kN	0				()		0						
		lbf	0				()			(0				
Thermal Resistance																
- coils to external structure	Rth	°C/Watt		0.6	556			0.5	36		0.419					
Max. Allowable Coil Temp.	Tmax	°C		13	30			13	80		130					

Notes:

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel : 540 633 • 3400 Web site

Kollmorgen **Ironless Motors**

18 Series Ironless - Non-cooled

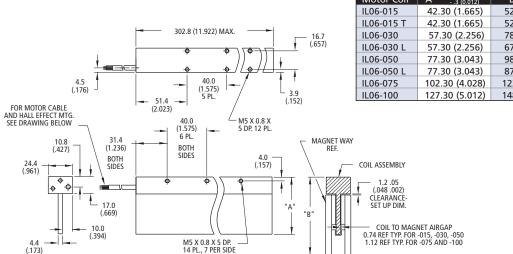
PLATINUM® DDL

Rated Performance	Symbol	Units		IL18-	075			IL18-100								
Peak force	Fp	N		90	0		1200									
		lbf		20	2		270									
Continuous force @ Tmax	Fc	N		26	0			33	38							
see note ①		lbf		59	9			7	'6							
Motor constant @ 25°C	Km	N/√W		17	.7			21	1.0							
Max. Cont. power dissipation	Pc	W		30	3			30	63							
Electrical Specifications																
		Winding Code	A1	A2	А3	A4	A1	A2	А3	A4						
Peak current	lp	Arms	7.0	14.0	21.0	42.1	7.0	14.0	21.0	42.1						
Continuous Current @ Tmax	lc	Arms	2.0	4.1	6.1	12.2	2.0	4.0	5.9	11.9						
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2						
Electrical inductance ±20%	L	mH L-L	15.0	3.75	0.42	21.0	5.25	2.33	0.58							
Back EMF constant	Ke	Vpeak/m/s L-L	105	52.4	34.9	17.5	140	69.9	46.6	23.3						
@ 25°C±10%		Vpeak/in/sec L-L	2.66	1.33	0.89	0.44	3.55	1.77	1.18	0.59						
Force constant @ 25°C±10%	Kf	N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5						
		lbf/Arms	28.8	14.4	9.6	4.8	38.5	19.2	12.8	6.4						
Mechanical Specification	s															
Coil Assembly Mass ±15%	Mc	kg		0.	91		1.10									
		lbs		2	.0		2.4									
Magnetic Way Type				MW	075			MW	/100							
Magnetic Way Mass ±15%	Mw	kg/m		18	3.9			27	'.3							
		lbs/in		1.	05			1.5	51							
Figures of Merit & Addit	ional Data															
Electrical time constant	Te	ms		0.	43			0.4	48							
Max.Theoretical Acceleration	Amax	g's		10)1			11	11							
Magnetic attraction	Fa	kN		()			()							
		lbf		()			()							
Thermal Resistance																
- coils to external structure	Rth	°C/Watt		0	35		0.29									
Max. Allowable Coil Temp.	Tmax	°C		13	30			13	30							

- 10 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: $Fc = Km \times Square Root (Pw)$; where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

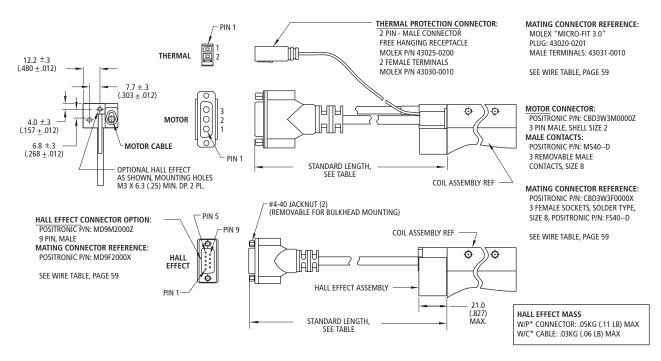
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


: 540 633 • 3400 Web site www.DanaherMotion.com

11

PLATINUM® DDL Kollmorgen

IL18-xxx


4.4 (.173)

	Coil Width	Typ. Assy. Width	Typ. Assy. Height
Motor Coil	"A" +.7 (0.027) 3 (0.012)	"B"±.6 (.024)	"T" ±.4 (.016)
IL06-015	42.30 (1.665)	52.10 (2.051)	25.40 (1.000)
IL06-015 T	42.30 (1.665)	52.10 (2.051)	21.80 (.858)
IL06-030	57.30 (2.256)	78.50 (3.091)	25.40 (1.000)
IL06-030 L	57.30 (2.256)	67.30 (2.650)	25.40 (1.000)
IL06-050	77.30 (3.043)	98.50 (3.878)	25.40 (1.000)
IL06-050 L	77.30 (3.043)	87.30 (3.437)	25.40 (1.000)
IL06-075	102.30 (4.028)	123.50 (4.862)	30.00 (1.181)
II 06-100	127 30 (5 012)	148 50 (5.846)	34.00 (1.339)

- ① Dimensions in mm (inches)
- ② Tolerances unless otherwise specified:
 - no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place ± 0.05 (.002)

Termination and Hall Effect Options

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							

Flying Lead Option								
Leads	Length							
C1	400 (16)							
C2	200 (8)							
C3	100 (4)							

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Kollmorgen **Ironless Motors**

24 Series Ironless - Non-cooled

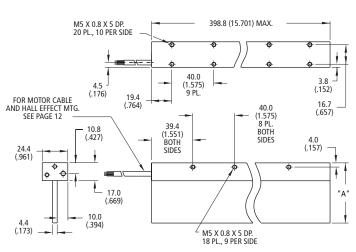
PLATINUM® DDL

Rated Performance	Symbol	Units	IL:	24-01	15	IL	24-03	30	IL	24-0	50		IL24	-075		IL24-100			
Peak force	Fp	N		240			480			800			12	00			1	600	
		lbf		54		108		180				27	0		360				
Continuous force @ Tmax	Fc	N		83			152		245			348				450			
see note ①		lbf		19			34			55		78				101			
Motor constant @ 25°C	Km	N/√W		6.7			11.2			15.9		20.6				24.4			
Max. Cont. power dissipation	Pc	W		213			261			333			40)5		484			
Electrical Specifications																			
		Winding Code	A1	A2	А3	A1	A2	А3	A1	A2	А3	A1	A2	А3	A4	A1	A2	А3	A4
Peak current	lp	Arms	7.1	14.2	28.4	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1
Continuous Current @ Tmax	lc	Arms	2.4	4.9	9.8	2.3	4.5	9.0	2.1	4.3	8.6	2.0	4.1	8.1	16.3	2.0	3.9	7.9	15.8
Electrical resistance																			
@ 25°C±10%	Rm	Ohms L-L	16.9	4.2	1.1	24.3	6.1	1.5	34.3	8.6	2.1	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92
Electrical inductance ±20%	L	mH L-L	2.00	0.50	0.13	5.10	1.28	0.32	12.0	3.00	0.75	20.0	5.00	1.25	0.31	28.0	7.00	1.75	0.44
Back EMF constant	Ke	Vpeak/m/s L-L	27.5	13.8	6.9	55.0	27.5	13.8	93.1	46.5	23.3	140	69.9	34.9	17.5	186	93.1	46.6	23.3
@ 25°C±10%		Vpeak/in/sec L-L	0.70	0.35	0.17	1.40	0.70	0.35	2.36	1.18	0.59	3.55	1.77	0.89	0.44	4.73	2.37	1.18	0.59
Force constant @ 25°C±10%	Kf	N/Arms	33.7	16.9	8.4	67.4	33.7	16.9	114	57.0	28.5	171	85.6	42.8	21.4	228	114	57.0	28.5
		lbf / Arms	7.6	3.8	1.9	15.2	7.6	3.8	25.6	12.8	6.4	38.5	19.2	9.6	4.8	51.3	25.6	12.8	6.4
Mechanical Specifications																			
Coil Assembly Mass ±15%	Mc	kg		0.57			0.72			0.92			1.1	17		1.42		42	
		lbs		1.3			1.6			2.0			2.	6		3.1		.1	
Magnetic Way Type				MW			MW			MW			MW	075			MW	/100	
			015	C	15T	030	0	30L	050	0 0)50L								
Magnetic Way Mass ±15%	Mw	kg/m	5.1		4.2	9.4		7.3	12.	2	10.2		18	3.9			27	7.3	
		lbs/in	0.28	3 ().23	0.5	1 0	.40	0.6	8 (0.56		1.	05			1.	51	
Figures of Merit & Additiona	l Data																		
Electrical time constant	Te	ms		0.12			0.21			0.35		0.43				0.	48		
Max.Theoretical Acceleration	Amax	g's		42.9			68.0			88.7		105				1	15		
Magnetic attraction	Fa	kN		0			0		0		0			0					
		lbf		0			0			0		0				(0		
Thermal Resistance																			
- coils to external structure	Rth	°C/Watt		0.49			0.40			0.32			0	26		0.22			
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			13	30		130			

- Notes:

 ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

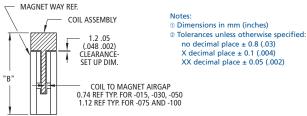
 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

633 • 3400 Web site www.DanaherMotion.com

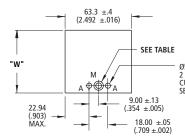
13

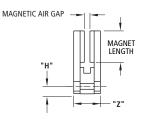
#10 M5 X 0.8 X 8.0 DP.


IL24-xxx

	Coil Width	Typ. Assy. Width	Typ. Assy. Height
Motor Coil	"A" +.7 (0.027) 3 (0.012)	"B"±.6 (.024)	"T" ±.4 (.016)
IL06-015	42.30 (1.665)	52.10 (2.051)	25.40 (1.000)
IL06-015 T	42.30 (1.665)	52.10 (2.051)	21.80 (.858)
IL06-030	57.30 (2.256)	78.50 (3.091)	25.40 (1.000)
IL06-030 L	57.30 (2.256)	67.30 (2.650)	25.40 (1.000)
IL06-050	77.30 (3.043)	98.50 (3.878)	25.40 (1.000)
IL06-050 L	77.30 (3.043)	87.30 (3.437)	25.40 (1.000)
IL06-075	102.30 (4.028)	123.50 (4.862)	30.00 (1.181)
IL06-100	127.30 (5.012)	148.50 (5.846)	34.00 (1.339)

no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004)

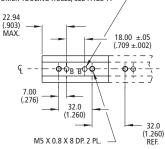

XX decimal place ± 0.05 (.002)


Ironless Magnet Ways

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 17). Standard assembly lengths are shown below.

MWxxx-0064

Ø5.160-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES, SEE PAGE 17


	iviagnet Size	"H"	vv	"Z"
Magnet Way	Ref.	± .08 (.003)	± .4 (.016)	± .4 (.016)
MW015-0064	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0064	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0064	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0064	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0064	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0064	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0064	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0064	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

14144073 0001	7 3111111	0.23 (.32 1)	103.20 (1.1 12)	30.00	(1.101	/							
MW100-0064	100mm	8.23 (.324)	130.20 (5.126)	34.00	(1.339)							
	Hardware (Hex, Socket Head Cap)												
	Hole Dia.	C'bore Dia.	C'bore Depth			Bottom Mount							
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option							
MW015-0064	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.							
MW015T-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.							
MW030-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.							
MW030L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.							
MW050-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.							
MW050L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.							
MW075-0064	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.							

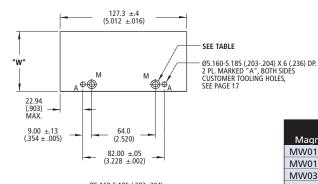
9.35 (.368)

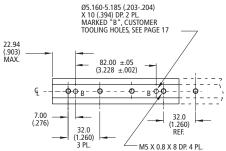
9.96 (.392)

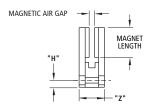
M5

- Notes:
 ① Dimensions in mm (inches)
- © Tolerances unless otherwise specified: no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.




MW100-0064

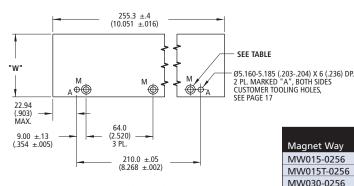

5.70 (.224)

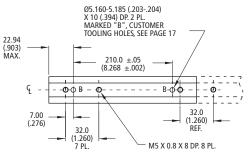
PLATINUM® DDL Kollmorgen **Ironless Magnet Ways**

MWxxx-0128

MAGNETIC AIR GAP

Notes:


- ① Dimensions in mm (inches)
- ② Tolerances unless otherwise specified:
 - no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

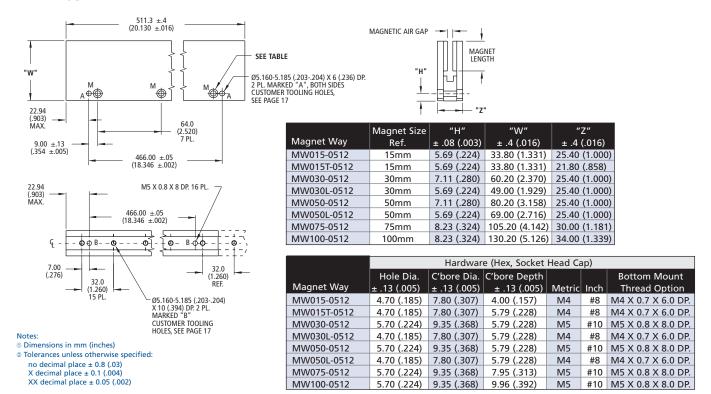

	Magnet Size	"H"	"W"	"Z"
Magnet Way	Ref.	± .08 (.003)	± .4 (.016)	± .4 (.016)
MW015-0128	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0128	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0128	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0128	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0128	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0128	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0128	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0128	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	Hardware (Hex, Socket Head Cap)											
	Hole Dia.	C'bore Dia C'bore Depth				Bottom Mount						
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option						
MW015-0128	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW015T-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW030-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW030L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW050-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW050L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW075-0128	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW100-0128	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.						

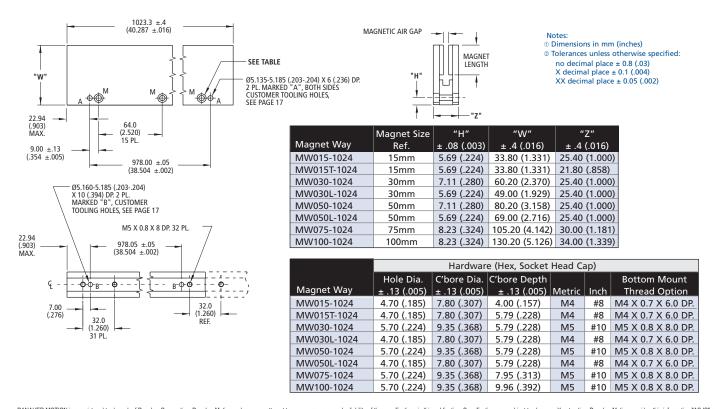
MAGNET LENGTH

MWxxx-0256

	Magnet Size	"H"	"W"	"Z"
Magnet Way	Ref.	± .08 (.003)	± .4 (.016)	± .4 (.016)
MW015-0256	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0256	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0256	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0256	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0256	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0256	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0256	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0256	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)
				-


		Hardwar	e (Hex, Socket	Head Ca	ap)	
	Hole Dia. C'bore Dia. C'bore Depth					Bottom Mount
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option
MW015-0256	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.
MW015T-0256	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
MW030-0256	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.
MW030L-0256	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
MW050-0256	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.
MW050L-0256	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
MW075-0256	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.
MW100-0256	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.

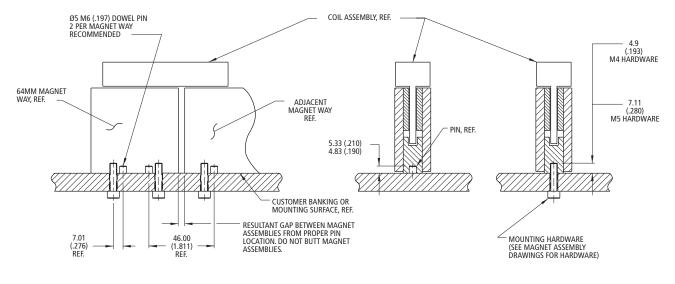
Notes:


① Dimensions in mm (inches)

② Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

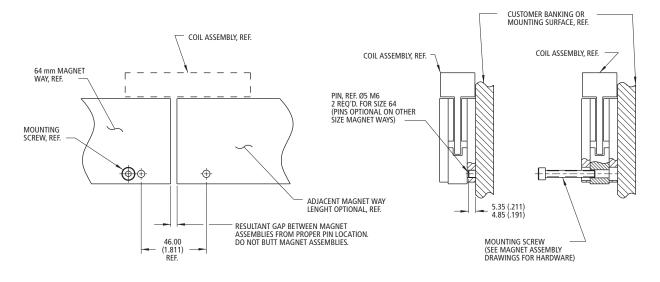
MWxxx-0512

MWxxx-1024



17

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512, 1024 mm.


Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Bottom mounting installation

Dimensions in mm(in)

Side mounting installation

Dimensions in mm(in)

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400 Web site : www.DanaherMotion.com

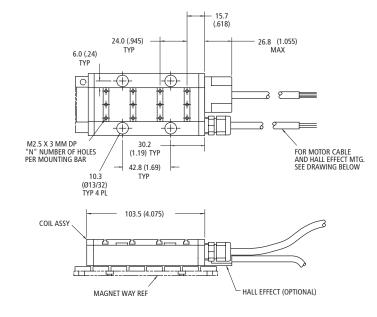
ICD05 Series Ironcore

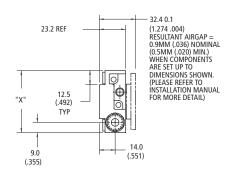
Rated Performance	Symbol	Units	ICD0!	5-030	ICD0	5-050	ICD05	-075	ICD0	5-100
Peak force	Fp	N	17	70	28	30	42	5	55	50
		lbf	3	8	6	i3	96	5	12	24
Continuous force @ Tmax	Fc	N	5			7	12	5	157	
see note ①		lbf	1	3	20		28		35	
Motor constant @ 130°C	Km	N/√W	10	.3	14	1.5	18	.6	22.0	
		lbf/√W	2.	.3	3	.3	4.	2	4.9	
Motor constant @ 25°C	Km25	N/√W	12	3	17	7.2	22	.0	26	.0
		lbf/√W	2.	.8	3	.9	4.	9	5.	9
Max. Cont. power dissipation	Pc	W	3	0	3	6	46	5	5	1
Electrical Specifications										
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5
Peak current	lp	Arms	7.9	13.7	8.5	14.7	8.5	14.7	8.5	14.7
Continuous Current @ Tmax	lc	Arms	2.1	3.7	2.0	3.4	1.9	3.3	1.8	3.1
Electrical resistance										
@ 25°C±10%	Rm	Ohms L-L	3.2	1.1	4.5	1.5	6.1	2.0	7.7	2.6
Electrical inductance ±20%	L	mH L-L	9.1	3.0	14.4	4.8	21.0	7.0	27.6	9.2
Back EMF constant	Ke	Vpeak/m/s L-L	21.8	12.6	36.3	21.0	54.3	31.4	72.4	41.8
@ 25°C±10%		Vpeak/in/sec L-L	0.55	0.32	0.92	0.53	1.38	0.80	1.84	1.06
Force constant @ 25°C±10%	Kf	N/Arms	26.7	15.4	44.5	25.7	66.5	38.4	88.7	51.2
		lbf / Arms	6.0	3.5	10.0	5.8	15.0	8.6	19.9	11.5
Mechanical Specifications										
Coil Assembly Mass ±15%	Mc	kg	0.	62	0.	95	1.3	36	1.	.71
		lbs	1	.4	2	.1	3.	.0	3	.8
Magnetic Way Type			МС	0030	MCI	D050	MCD	0075	МС	D100
Magnetic Way Mass ±15%	Mw	kg/m	2.	70	3.	93	5.4	48	7.	.04
		lbs/in	0.	15	0.	22	0.3	31	0.	.39
Figures of Merit & Additiona	ıl Data									
Electrical time constant	Te	ms	2	.9	3	.2	3.	.4	3	.6
Max.Theoretical Acceleration	Amax	g's	28	3.0	30	0.2	31	.9	3:	2.8
Magnetic attraction	Fa	kN	0.	53	0.	89	1.3	33	1.	.78
		lbf	1	19	2	00	299		400	
Thermal Resistance										
- coils to external structure	Rth	°C/Watt	3.	50	2.	90	2.30		2.06	
Max. Allowable Coil Temp.	Tmax	°C	13	30	1.	30	13	30	1	30

Notes

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:

 FC = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

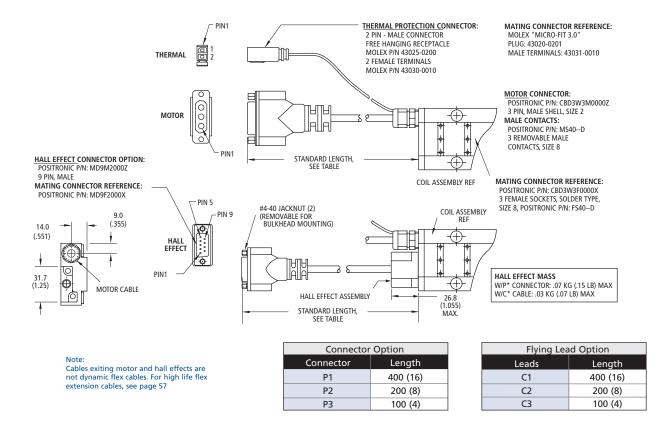

 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel : 540 633 • 3400 \

PLATINUM® DDL Kollmorgen ICD Series

ICD05-xxx



Motor Coil	Coil Width	# Holes
Type	"X"	"N"
ICD05-030	55.0 (2.165) ± 1.0 (.04)	3
ICD05-050	75.0 (2.953) ±.1.0 (.04)	4
ICD05-075	100.0 (3.937) ± 1.0 (.04)	5
ICD05-100	125.0 (4.921) ± 1.0 (.04)	5

Notes:

- ① Dimensions in mm (inches)
- © Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

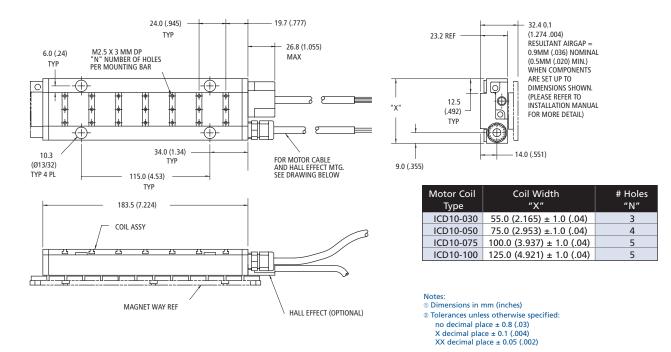
Termination and Hall Effect Options

ICD10 Series Ironcore

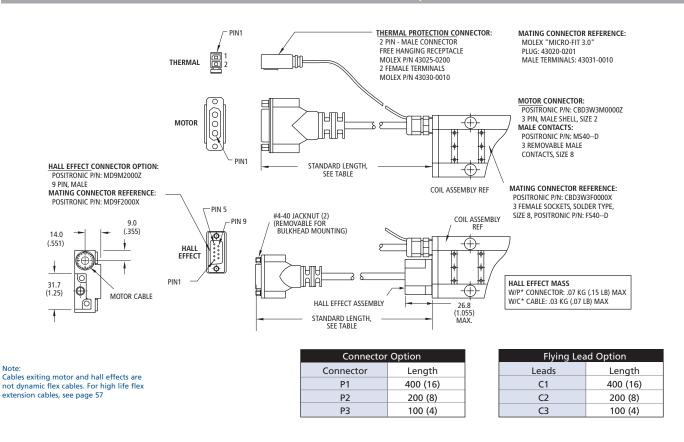
Rated Performance	Symbol	Units		ICD1	0-030)		ICD10	0-050			ICD10)-075		ICD10-100			
Peak force	Fp	N		34	40			56	0			85	50			11	30	
		lbf		7	'6		126			19	91			2	54			
Continuous force @ Tmax	Fc	N		104		171			24	16		315						
see note ①		lbf		2	!3			38	8			5	5		71			
Motor constant @ 130°C	Km	N/√W		14	1.6			20	.5		26.4				31.3			
		lbf/√W		3	.3			4.	6			5.	9		7.0			
Motor constant @ 25°C	Km25	N/√W		17	7.3			24	.3			31	.3		37.1			
		lbf/√W		3	.9			5.	5			7.	0			8	.3	
Max. Cont. power dissipation	Pc	W		5	1			69	9			8	7			1	01	
Electrical Specifications																		
		Winding Code	A1	A4	A5	A8	A1	A4	A5	A8	A1	A4	A5	A8	A1	A4	A5	A8
Peak current	lp	Arms	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4
Continuous Current @ Tmax	lc	Arms	1.9	3.9	3.4	6.8	1.9	3.8	3.3	6.6	1.8	3.7	3.2	6.4	1.8	3.5	3.1	6.1
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	6.4	1.6	2.1	0.5	9.0	2.2	3.0	0.7	12.2	3.0	4.1	1.0	15.4	3.9	5.1	1.3
Electrical inductance ±20%	L	mH L-L	18.3	4.6	6.1	1.5	29.0	7.3	9.7	2.4	42.4	10.6	14.1	3.5	55.8	13.9	18.6	4.6
Back EMF constant	Ke	Vpeak/m/s L-L	43.7	21.8	25.2	12.6	72.8	36.4	42.0	21.0	109.2	54.6	63.1	31.5	145.7	72.8	84.1	42.0
@ 25°C±10%		Vpeak/in/sec L-L	1.11	0.55	0.64	0.32	1.85	0.92	1.07	0.53	2.77	1.39	1.60	0.80	3.70	1.85	2.14	1.07
Force constant @ 25°C±10%	Kf	N/Arms	53.5	26.8	30.9	15.4	89.2	44.6	51.5	25.7	133.8	66.9	77.2	38.6	178.4	89.2	103.0	51.5
		lbf / Arms	12.0	6.0	6.9	3.5	20.1	10.0	11.6	5.8	30.1	15.0	17.4	8.7	40.1	20.1	23.2	11.6
Mechanical Specification	s																	
Coil Assembly Mass ±15%	Mc	kg		1	.1			1.9	9			2	.7		3.4			
		lbs		2	.5			4.1	ı			5	.9			7	.5	
Magnetic Way Type				MCI	D030			MCD	050			MC	075			MC	D100	
Magnetic Way Mass ±15%	Mw	kg/m		2.	70			3.9	3			5.	48			7.	04	
		lbs/in		0.	15			0.2	2			0.	31			0.	39	
Figures of Merit & Addit	ional Data																	
Electrical time constant	Te	ms		2	.9			3.2	2			3	.5			3	.6	
Max.Theoretical Acceleration	Amax	g's		30	0.7			30.	7			32	2.5			3	3.7	
Magnetic attraction	Fa	kN	1.06		1.78		2.66			3.56								
		lbf	238		400		598			800								
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt		2.05		1.52		1.21		1.04								
Max. Allowable Coil Temp.	Tmax	°C		1	30			130	0			13	30			1	30	

Notes:

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc.

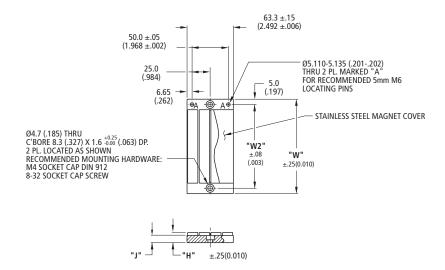

 The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:

 FC = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.


 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

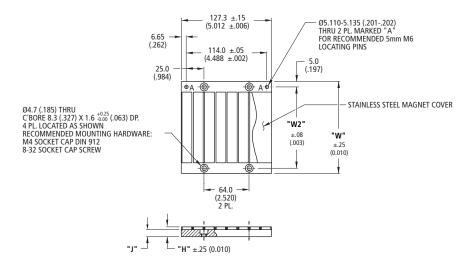
PLATINUM® DDL Kollmorgen ICD Series

ICD10-xxx



Termination and Hall Effect Options

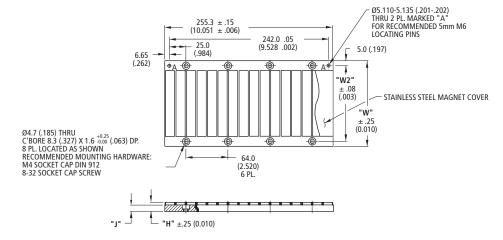
Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 24). Standard assembly lengths are shown below.


MCDxx-0064

Туре	"W"	"W2"	"J"	"H"		
MCD030-0064-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)		
MCD050-0064-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)		
MCD075-0064-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)		
MCD100-0064-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)		

Dimensions in mm(in)

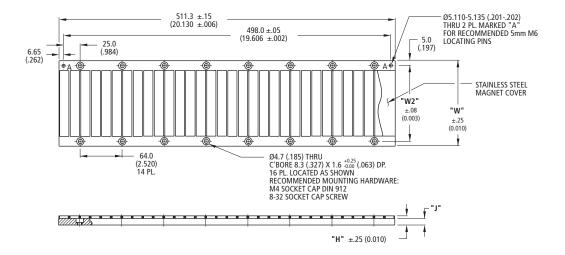
MCDxx-0128



Туре	"W"	"W2"	"J"	"H"		
MCD030-0128-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)		
MCD050-0128-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)		
MCD075-0128-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)		
MCD100-0128-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)		

Dimensions in mm(in)

PLATINUM® DDL Kollmorgen ICD Magnet Ways


MCDxx-0256

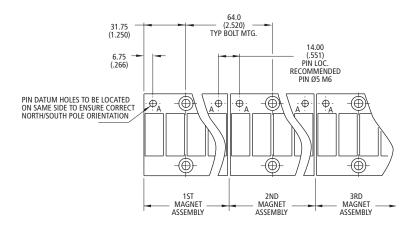
Туре	"W"	"W2"	"J"	"H"		
MCD030-0256-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)		
MCD050-0256-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)		
MCD075-0256-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)		
MCD100-0256-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)		

Dimensions in mm(in)

MCDxx-0512

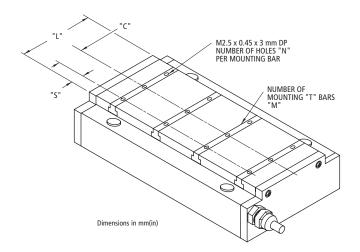
Туре	"W"	"W2"	"J"	"H"
MCD030-0512-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0512-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0512-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0512-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm(in)


23

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Tel : 540 633 • 3400 Web site : www.DanaherMotion.com


Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Dimensions in mm(in)

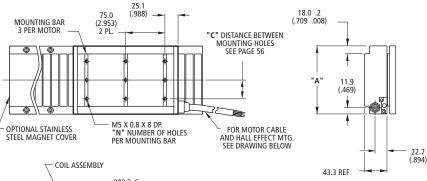
Typical Mounting Bar Lengths & Mounting Holes Tabulation

Motor	Number	Spacing	Mounting	
Coil	of Holes	Between Holes	Bar Length	
Туре	"N"	"C"	"L"	"S"
ICDXX-030	3	12.0 (.472)	30 (1.18)	3.0 (.118)
ICDXX-050	4	12.0 (.472)	50 (1.97)	7.0 (.276)
ICDXX-075	5	16.0 (.630)	75 (2.95)	5.5 (.217)
ICDXX-100	5	20.0 (.787)	100 (3.94)	10.0 (.394)

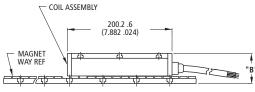
Motor Coil Type	Number of Bars "M"
ICD05-XXX	4
ICD10-XXX	7

25

11 Series Ironcore - Non-cooled


Rated Performance	Symbol	Units	IC1	IC11-015		I-030	IC1	1-050	IC11	-075	5 IC11-100		IC11-150		IC11-200		IC11-250				
Peak force	Fp	N	1	90	3	75	6	25	94	40	12	250	18	75	25	00	31	125			
		lbf	4	43	8	34	1	41	2	11	281		422		562		703				
Continuous force @ Tmax	Fc	N	7	73	1	51	2	76	4:	35	599		905		1255		14	496			
see note ①		lbf		16	3	34		62		98		35	203		282		3	36			
Motor constant @ 25°C	Km	N/√W	1.	13.1		2.5	32.0		41	.4	49	9.1	62	2.0	73	3.0	79	9.5			
Max. Cont. power dissipation	Pc	W	4	44		54	1	06	1	57	210		300		4	18	5	00			
Electrical Specifications																					
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5			
Peak current	lp	Arms	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1			
Continuous Current @ Tmax	lc	Arms	3.9	6.7	4.0	6.9	4.4	7.6	4.6	8.0	4.8	8.2	4.8	8.3	5.0	8.6	4.9	8.6			
Electrical resistance																					
@ 25°C±10%	Rm	Ohms L-L	1.4	0.47	1.9	0.63	2.6	0.87	3.5	1.2	4.4	1.5	6.2	2.1	8.0	2.7	9.7	3.2			
Electrical inductance ±20%	L	mH L-L	9.1	3.0	16.7	5.6	26.7	8.9	39.4	13.1	52.0	17.3	77.3	25.8	103	34.2	128	42.6			
Back EMF constant	Ke	Vpeak/m/s L-L	15.4	8.9	30.9	17.8	51.4	29.7	77.1	44.5	103	59.3	154	89.0	206	119	247	143			
@ 25°C±10%		Vpeak/in/sec L-L	0.39	0.23	0.78	0.45	1.30	0.75	1.96	1.13	2.61	1.51	3.92	2.26	5.22	3.02	6.27	3.62			
Force constant @ 25°C±10%	Kf	N/Arms	18.9	10.9	37.8	21.8	62.9	36.3	94.4	54.5	126	72.7	189	109	252	145	303	175			
		lbf / Arms	4.2	2.5	8.5	4.9	14.1	8.2	21.2	12.3	28.3	16.3	42.4	24.5	56.6	32.7	68.0	39.3			
Mechanical Specifications																					
Coil Assembly Mass ±15%	Mc	kg	1	.7	2.5		3.6		5.0		5.0 6.5		9.4		12.3		15.2				
		lbs	3	3.7	5	.5	7	'.9	1.	1.0	14	1.3	20	0.7	27.1		33.5				
Magnetic Way Type			MC	015	МС	030	М	050	МС	075	МС	100	МС	150	MC200		МС	250			
Magnetic Way Mass ±15%	Mw	kg/m	2	5	5	.4	7	'.5	10).1	12	2.7	20	0.7	26	5.8	33	3.2			
		lbs/in	0.	.14	0.	30	0.	.42	0.	56	0.	71	1.	.16	1.	50	1.86				
Figures of Merit & Addition	nal Data																				
Electrical time constant	Te	ms	6	i.5	8	.8	10	0.3	1	1.3	11	1.8	1.	2.5	12	2.8	13	3.2			
Max.Theoretical Acceleration	Amax	g's	1	1.4	15	5.3	1	7.7	19	9.2	19	9.6	20	0.3	20).7	21	1.0			
Magnetic attraction	Fa	kN	0.	0.72		.4	2	2.4	3	.7	4	.9	7	'.3	9	.9	12	2.3			
		lbf	1	162		24	5	46	8.	21	11	02	16	539	22	14	2761				
Thermal Resistance																					
- coils to external structure	Rth	°C/Watt	2.	.40	1.	64	0.99		9 0.67		0.67 0.50		0.50		0.35		0.	25	0.	21	
Max. Allowable Coil Temp.	Tmax	°C	1	130		130		130		130		130 130		130		130		130		130	

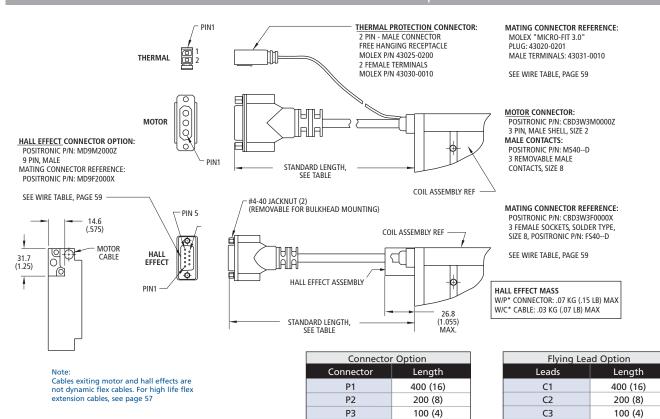
- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

633 • 3400 Web site www.DanaherMotion.com Ironcore Motors Kollmorgen PLATINUM® DDL

Non-Cooled IC11-xxx

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)



Notes

- ① Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coi Type	Coil Width "A"	Non-Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC11-015	50.0 (1.969) ± 1.0 (.04)	ICXX-015	54.3±0.1 (2.138±.004)	54.6±0.1 (2.150±.004)	1
IC11-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC11-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC11-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effect Options

Kollmorgen

22 SERIES IRONCORE - NON-COOLED

Rated Performance	Symbol	Units	IC22-015		ı	C22-03	0		C22-05()	IC22-075					
Peak force	Fp	N		375			750			1250			1875			
		lbf		84			169			281			422			
Continuous force @ Tmax	Fc	N		143			298			548			864			
see note ①		lbf		32			67			123			194			
Motor constant @ 25°C	Km	N/√W		18.2			31.4			44.8						
Max. Cont. power dissipation	Pc	W		88		128				212			313			
Electrical Specifications																
-		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6	A1	A2	A6		
Peak current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1		
Continuous Current @Tmax	lc	Arms	3.8	7.6	13.1	3.9	7.9	13.7	4.4	8.7	15.1	4.6	9.2	15.9		
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	2.9	0.73	0.24	3.9	1.0	0.33	5.3	1.3	0.44	7.1	1.8	0.59		
Electrical inductance ±20%	L	mH L-L	18.3	4.6	1.5	33.4	8.4	2.8	53.4	13.4	4.5	78.9	19.7	6.6		
Back EMF constant	Ke	Vpeak/m/s L-L	30.9	15.4	8.9	61.7	30.9	17.8	103	51.4	29.7	154	77.1	44.5		
@ 25°C±10%		Vpeak/in/sec L-L	0.78	0.39	0.23	1.57	0.78	0.45	2.61	1.31	0.75	3.92	1.96	1.13		
Force constant @ 25°C±10%	Kf	N/Arms	37.8	18.9	10.9	75.6	37.8	21.8	126	63.0	36.3	189	94.4	54.5		
		lbf/Arms	8.5	4.2	2.5	17.0	8.5	4.9	28.3	14.2	8.2	42.4	21.2	12.3		
Mechanical Specifications																
Coil Assembly Mass ±15%	Mc	kg		3.2			4.8			6.9			9.6			
		lbs		7.1			10.6			15.2			21.2			
Magnetic Way Type				MC015			MC030			MC050			MC075			
Magnetic Way Mass ±15%	Mw	kg/m		2.5			5.4			7.5			10.1			
		lbs/in		0.14			0.30			0.42			0.56			
Figures of Merit & Additio	nal Data															
Electrical time constant	Te	ms		6.3			8.6			10.1			11.1			
Max.Theoretical Acceleration	Amax	g's		11.9			15.9			18.5			19.9			
Magnetic attraction	Fa	kN	1.5			2.9			4.9			7.3				
		lbf	328			654			1090			1637				
Thermal Resistance																
- coils to external structure	Rth	°C/Watt		1.20		0.82				0.50		0.34				
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			130			

Notes

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- etc. must be considered to determine the achievable acceleration in each application.

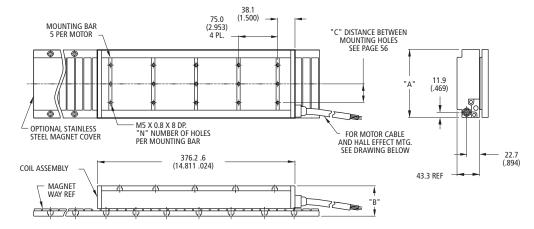
 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400 Web site : w

22 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units		IC22-10	0	l k	C22-150)	ı	C22-20	0	IC22-250			
Peak force	Fp	N		2500			3750			5000			6250		
		lbf		562			843			1124			1405		
Continuous force @Tmax	Fc	N		1198			1810			2513		3000			
see note ①		lbf		269			407			565		674			
Motor constant @ 25°C	Km	N/√W		69.5			87.8			103.4					
Max. Cont. power dissipation	Pc	W		420			600			833			1000		
Electrical Specifications															
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6	A1	A2	A6	
Peak current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1	
Continuous Current @ Tmax	lc	Arms	4.8	9.5	16.5	4.8	9.6	16.6	5.0	10.0	17.3	5.0	9.9	17.2	
Electrical resistance															
@ 25°C±10%	Rm	Ohms L-L	8.8	2.2	0.73	12.4	3.1	1.0	15.9	4.0	1.3	19.3	4.8	1.6	
Electrical inductance ±20%	L	mH L-L	104	26.0	8.7	155	38.7	12.9	205	51.3	17.1	256	63.9	21.3	
Back EMF constant	Ke	Vpeak/m/s L-L	206	103	59.3	308	154	89.0	411	206	119	494	247	143	
@ 25°C±10%		Vpeak/in/sec L-L	5.22	2.61	1.51	7.83	3.92	2.26	10.4	5.22	3.02	12.5	6.27	3.62	
Force constant @ 25°C±10%	Kf	N/Arms	252	126	72.7	378	189	109	504	252	145	605	303	175	
		lbf/Arms	56.6	28.3	16.3	84.9	42.5	24.5	113	56.6	32.7	136	68.0	39.3	
Mechanical Specifications															
Coil Assembly Mass ±15%	Mc	kg		12.5			18.1			23.7			29.3		
		lbs		27.6			39.9		52.2				64.6		
Magnetic Way Type				MC100			MC150			MC200			MC250		
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8			33.2		
		lbs/in		0.71			1.16			1.50			1.86		
Figures of Merit & Additio	nal Data														
Electrical time constant	Te	ms		11.8			12.5			12.9			13.2		
Max.Theoretical Acceleration	Amax	g's		20.4			21.1			21.5			21.8		
Magnetic attraction	Fa	kN	9.8			14.6			19.7			24.6			
		lbf	2205			3271			4433			5524			
Thermal Resistance															
- coils to external structure	Rth	°C/Watt		0.25		0.18				0.13		0.11			
Max. Allowable Coil Temp.	Tmax	°C		130		130				130		130			

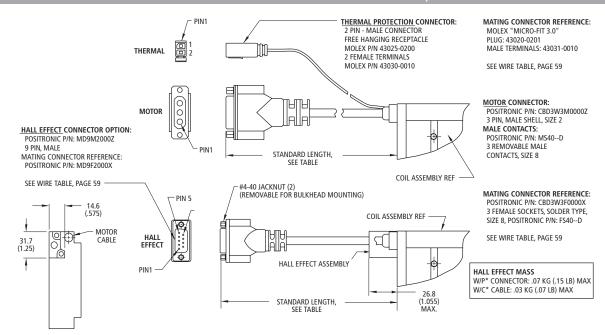

- 1 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

 The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

PLATINUM® DDL Kollmorgen Ironcore Motors

Non-Cooled IC22-xxx


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Notes

- ① Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coil Type	Coil Width "A"	Non-Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC22-015	50.0 (1.969) ± 1.0 (.04)	ICXX-015	54.3±0.1 (2.138±.004)	54.6±0.1 (2.150±.004)	1
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC22-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effects Options

Note:

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Connector	Option
Connector	Length
P1	400 (16)
P2	200 (8)
P3	100 (4)

Flying Lea	nd Option
Leads	Length
C1	400 (16)
C2	200 (8)
C3	100 (4)

29

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Tel

E S40 633 • 3400 Web site E www.DanaherMotion.com

33 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC33-015					IC33-	030			IC33	-050		IC33-075				
Peak force	Fp	N		56	65			112	25			18	375			281	5		
		lbf		12	27			25	3			4.	22			633	3		
Continuous force @Tmax	Fc	N		2	16			45	0			8	24			130	1		
see note ①		lbf		4	.9			10	1			1	85		292				
Motor constant @ 25°C	Km	N/ √W		22	2.3			38.	.5			55	5.0						
Max. Cont. power dissipation	Pc	W		131				19	2			3	17			47	1		
Electrical Specifications																			
		Winding Code	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7	
Peak current	lp	Arms	11.1	33.3	19.1	57.7	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	
Continuous Current @ Tmax	lc	Arms	3.8	11.4	6.6	19.8	4.0	11.9	6.9	20.6	4.4	13.1	7.6	22.7	4.6	13.8	8.0	23.9	
Electrical resistance																			
@ 25°C±10%	Rm	Ohms L-L	4.3	0.48	1.4	0.16	5.8	0.64	1.9	0.21	7.9	0.88	2.6	0.29	10.6	1.2	3.5	0.39	
Electrical inductance ±20%	L	mH L-L	27.4	3.0	9.1	1.0	50.1	5.6	16.7	1.9	80.2	8.9	26.7	3.0	118	13.1	39.4	4.4	
Back EMF constant	Ke	Vpeak/m/s L-L	46.3	15.4	26.7	8.9	92.6	30.9	53.5	17.8	154	51.4	89.0	29.7	231	77.1	134	44.5	
@ 25°C±10%		Vpeak/in/sec L-L	1.18	0.39	0.68	0.23	2.35	0.78	1.36	0.45	3.92	1.31	2.26	0.75	5.88	1.96	3.39	1.13	
Force constant @ 25°C±10%	Kf	N/Arms	56.7	18.9	32.7	10.9	113	37.8	65.5	21.8	189	62.9	109	36.3	283	94.4	164	54.5	
		lbf / Arms	12.7	4.2	7.4	2.5	25.5	8.5	14.7	4.9	42.4	14.1	24.5	8.2	63.7	21.2	36.8	12.3	
Mechanical Specifications																			
Coil Assembly Mass ±15%	Mc	kg		5	.0			7.	3			10	0.4			14	.4		
		lbs		11	1.0			16	.1			22	2.9			31	.7		
Magnetic Way Type				MC	015			MC	030			МС	050			MC	075		
Magnetic Way Mass ±15%	Mw	kg/m		2	.5			5.	4			7	.5			10	.1		
		lbs/in		0.	14			0.3	30			0.	42			0.5	56		
Figures of Merit & Additio	nal Data																		
Electrical time constant	Te	ms		6	.4			8.	6			10	0.2			11	.2		
Max.Theoretical Acceleration	Amax	g's		11	1.5			15	.7			18	3.4			19	.9		
Magnetic attraction	Fa	kN		2	.2			4.	4			7	.4			11	.0		
		lbf	497			99	1			16	552			24	80				
Thermal Resistance																			
- coils to external structure	Rth	°C/Watt		0.	80		0.55			0.33				0.22					
Max. Allowable Coil Temp.	Tmax	°C		1:	30			13	80		130				130				

- Notes:

 ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier
- etc. must be considered to determine the achievable acceleration in each application.

 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

Ironcore Motors

31

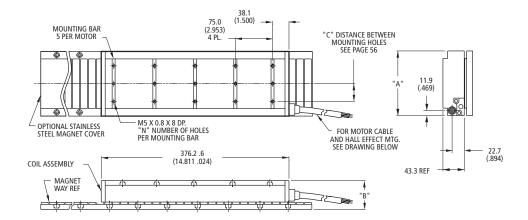
33 Series Ironcore - Non-cooled

Kollmorgen

Rated Performance	Symbol	Units	IC33-100					IC33	-150			IC33	3-200		IC33-250				
Peak force	Fp	N		37	50			562	25			75	500			937	' 5		
		lbf		84	13			120	65			16	586			210	8		
Continuous force @ Tmax	Fc	N		17	96			27	18			37	765			449)6		
see note ①		lbf		40)4			61	1			8	46		1011				
Motor constant @ 25°C	Km	N/√W		85	.1			107	7.8			1.	27		138				
Max. Cont. power dissipation	Pc	W		62	19			89	7			12	250			150	00		
Electrical Specifications																			
		Winding Code	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7	
Peak current	lp	Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	
Continuous Current @ Tmax	lc	Arms	4.8	14.3	8.2	24.7	4.8	14.4	8.3	24.9	5.0	14.9	8.6	25.9	5.0	14.9	8.6	25.7	
Electrical resistance																			
@ 25°C±10%	Rm	Ohms L-L	13.2	1.5	4.4	0.49	18.5	2.1	6.2	0.69	23.9	2.7	8.0	0.89	29.0	3.2	9.7	1.1	
Electrical inductance ±20%	L	mH L-L	156	17.3	52.0	5.8	232	25.8	77.3	8.6	308	34.2	103	11.4	384	42.6	128	14.2	
Back EMF constant	Ke	Vpeak/m/s L-L	308	103	178	59.3	463	154	267	89.0	617	206	356	119	741	247	428	143	
@ 25°C±10%		Vpeak/in/sec L-L	7.83	2.61	4.52	1.51	11.7	3.92	6.78	2.26	15.7	5.22	9.05	3.02	18.8	6.27	10.9	3.62	
Force constant @ 25°C±10%	Kf	N/Arms	378	126	218	72.7	567	189	327	109	756	252	436	145	907	302	524	175	
		lbf / Arms	84.9	28.3	49.0	16.3	127	42.5	73.5	24.5	170	56.6	98.1	32.7	204	68.0	118	39.3	
Mechanical Specifications																			
Coil Assembly Mass ±15%	Mc	kg		18	3.9			27	.3			3!	5.7			44	l.1		
		lbs		41	1.7		60.2					78	8.7			97	7.2		
Magnetic Way Type				МС	100			МС	150			МС	200			MC	250		
Magnetic Way Mass ±15%	Mw	kg/m		12	2.7			20).7			26	6.8			33	3.2		
		lbs/in		0.	71			1.	16			1.	.50			1.	86		
Figures of Merit & Additio	nal Data																		
Electrical time constant	Te	ms		11	1.8			12	2.5			12	2.9			13	3.2		
Max.Theoretical Acceleration	Amax	g's		20).2			21	.0			2	1.4			21	.7		
Magnetic attraction	Fa	kN		14	1.7			22	2.1			29	9.4			36	5.8		
		lbf	3305			49	57			66	509			82	62				
Thermal Resistance																			
- coils to external structure	Rth	°C/Watt		0.	17		0.12			0.084				0.070					
Max. Allowable Coil Temp.	Tmax	°C	130			130			130				130						

Notes

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:
 Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

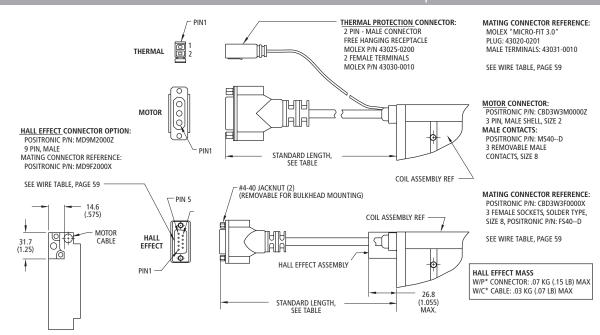

 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400 Web site : www.DanaherMotion.com

Ironcore Motors Kollmorgen PLATINUM® DDL

Non-Cooled IC33-xxx


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Notes

- ① Dimensions in mm (inches)
- © Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coil Type	Coil Width "A"	Non-Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC33-015	50.0 (1.969) ± 1.0 (.04)	ICXX-015	54.3±0.1 (2.138±.004)	54.6±0.1 (2.150±.004)	1
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC33-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effects Options

Note:

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Connector Option									
Connector	Length								
P1	400 (16)								
P2	200 (8)								
P3	100 (4)								

Flying Lead Option								
Leads	Length							
C1	400 (16)							
C2	200 (8)							
C3	100 (4)							

Ironcore Motors

33

44 Series Ironcore - Non-cooled

Kollmorgen

Rated Performance	Symbol	Units	IC44-015		IC44-030					IC44	-050		IC44-075					
Peak force	Fp	N	750		1500			2500				3750						
		lbf		169		337			562				843					
Continuous force @ Tmax	Fc	N		28	36			59	7		1096				1732			
see note ①		lbf		6	4			13	4		246				389			
Motor constant @ 25°C	Km	N/√W		25	.7		44.3				63	3.3		82.4				
Max. Cont. power dissipation	Pc	W		17	7 5			25	6			42	23		625			
Electrical Specifications																		
		Winding Code	A1	A2	А3	Α7	A1	A2	А3	A7	A1	A2	А3	A7	A1	A2	А3	A7
Peak current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4
Continuous Current @ Tmax	lc	Arms	3.8	7.6	15.1	26.2	3.9	7.9	15.8	27.3	4.4	8.7	17.4	30.2	4.6	9.2	18.3	31.8
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	5.8	1.5	0.36	0.12	7.8	2.0	0.49	0.16	10.6	2.7	0.66	0.22	14.1	3.5	0.88	0.29
Electrical inductance ±20%	L	mH L-L	36.5	9.1	2.3	0.8	66.8	16.7	4.2	1.4	107	26.7	6.7	2.2	158	39.4	9.9	3.3
Back EMF constant	Ke	Vpeak/m/s L-L	61.7	30.9	15.4	8.9	123	61.7	30.9	17.8	206	103	51.4	29.7	308	154	77.1	44.5
@ 25°C±10%		Vpeak/in/sec L-L	1.57	0.78	0.39	0.23	3.14	1.57	0.78	0.45	5.22	2.61	1.31	0.75	7.83	3.92	1.96	1.13
Force constant @ 25°C±10%	Kf	N/Arms	75.6	37.8	18.9	10.9	151	75.6	37.8	21.8	252	126	63.0	36.3	378	189	94.4	54.5
		lbf / Arms	17.0	8.5	4.2	2.5	34.0	17.0	8.5	4.9	56.6	28.3	14.2	8.2	84.9	42.5	21.2	12.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Mc	kg		6.	4		9.6			13.9				19.2				
		lbs		14	.1		21.2			30.6				42.3				
Magnetic Way Type				MC	015		MC030				MC	050		MC075				
Magnetic Way Mass ±15%	Mw	kg/m		2.	.5		5.4				7.	5		10.1				
		lbs/in		0.	14		0.30				0.4	12		0.56				
Figures of Merit & Additio	nal Data																	
Electrical time constant	Te	ms	6.3		8.6					10	.1		11.2					
Max.Theoretical Acceleration	Amax	g's	11.9		15.9			18.3					19	.9				
Magnetic attraction	Fa	kN	2.9		5.9			9.8				14.7						
		lbf	661		1322				220	03		3305						
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt		0.0	60		0.41			0.25				0.17				
Max. Allowable Coil Temp.	Tmax	°C	130		130			130				130						

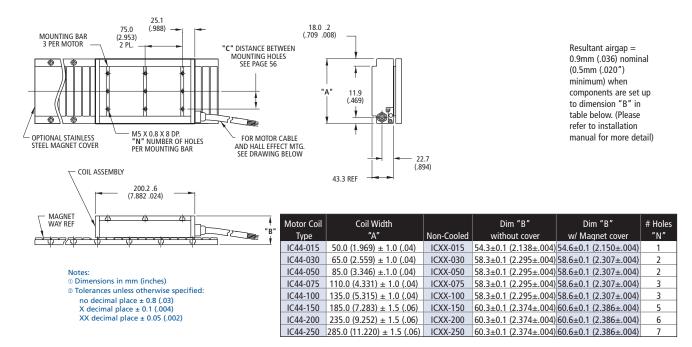
Notes

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

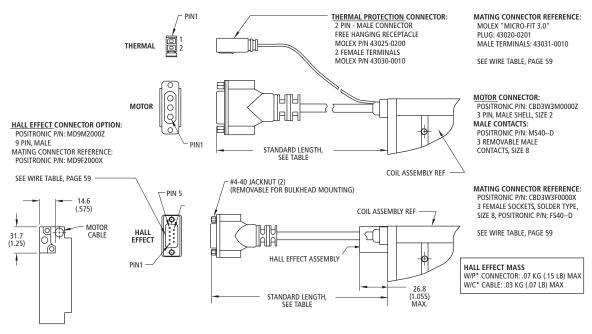
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

■ 540 633 • 3400 Web site ■ www.DanaherMotion.com

44 Series Ironcore - Non-cooled


Rated Performance	Symbol	Units	IC44-100			IC44-150					IC44	-200		IC44-250				
Peak force	Fp	N	5000		7500			10000				12500						
		lbf	1124		1686			2248				2810						
Continuous force @Tmax	Fc	N		23	397			36	17		5025				6029			
see note ①		lbf		5	39			81	13		1130				1355			
Motor constant @ 25°C	Km	N/√W		98	8.3			12	24			14	46		160			
Max. Cont. power dissipation	Pc	W		8	40		1193				16	67		2019				
Electrical Specifications																		
		Winding Code	A1	A2	А3	A7	A1	A2	А3	A7	A1	A2	А3	A7	A1	A2	А3	A7
Peak current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4
Continuous Current @ Tmax	lc	Arms	4.8	9.5	19.0	33.0	4.8	9.6	19.2	33.2	5.0	10.0	20.0	34.6	5.0	10.0	19.9	34.5
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	17.6	4.4	1.1	0.37	24.7	6.2	1.5	0.51	31.8	8.0	2.0	0.66	38.6	9.7	2.4	0.80
Electrical inductance ±20%	L	mH L-L	208	52.1	13.0	4.3	309	77.4	19.3	6.4	410	103	25.7	8.6	512	128	32.0	10.7
Back EMF constant	Ke	Vpeak/m/s L-L	411	206	103	59.3	617	308	154	89.0	823	411	206	119	988	494	247	143
@ 25°C±10%		Vpeak/in/sec L-L	10.4	5.22	2.61	1.51	15.7	7.83	3.92	2.26	20.9	10.4	5.22	3.02	25.1	12.5	6.27	3.62
Force constant @ 25°C±10%	Kf	N/Arms	504	252	126	72.7	755	378	189	109	1008	504	252	145	1210	605	302	175
		lbf/Arms	113	56.6	28.3	16.3	170	84.9	42.5	24.5	227	113	56.6	32.7	272	136	68.0	39.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Мс	kg		2	5.0		36.2				47	7.4		58.5				
		lbs		5	5.1		79.8				10	04		129				
Magnetic Way Type				M	2100		MC150				МС	200		MC250				
Magnetic Way Mass ±15%	Mw	kg/m		1	2.7		20.7				26	5.8		33.2				
		lbs/in	0.71		1.16			1.50				1.86						
Figures of Merit & Addition	nal Data																	
Electrical time constant	Te	ms		1	1.8		12.5				12	2.9			13	.3		
Max.Theoretical Acceleration	Amax	g's	20.4		21.1			21.5				21.8						
Magnetic attraction	Fa	kN	19.6		29.4				39	9.4		49.2						
		lbf	4406		6609				88	58		11061						
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt		0	.13		0.088			0.063				0.052				
Max. Allowable Coil Temp.	Tmax	°C	130			13	30		130				130					

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
 The RMS current needed to produce this force is simply Fc divided by the force constant Kf.


 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

PLATINUM® DDL Kollmorgen Ironcore Motors

Non-Cooled IC44-xxx

Termination and Hall Effects Options

Note:
Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							

Flying Lead Option								
Leads	Length							
C1	400 (16)							
C2	200 (8)							
C3	100 (4)							

35

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

540 633 • 3400 Web site www.DanaherMotion.com

55 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC55-015					IC55	030		IC55-050					
Peak force	Fp	N	940			187	75		3125							
		lbf	211				42	2		703						
Continuous force @Tmax	Fc	N		3!	59			74	8		1374					
see note ①		lbf		8	1			16	8		309					
Motor constant @ 25°C	Km	N/√W		28	3.9			49	.7		71.0					
Max. Cont. power dissipation	Pc	W		2	19			32	0		530					
Electrical Specifications																
		Winding Code	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7		
Peak current	lp	Arms	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1		
Continuous Current @ Tmax	lc	Arms	3.8	19.0	6.6	32.9	4.0	19.8	6.9	34.3	4.4	21.8	7.6	37.8		
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	7.2	0.29	2.4	0.10	9.7	0.39	3.2	0.13	13.2	0.53	4.4	0.18		
Electrical inductance ±20%	L	mH L-L	45.6	1.8	15.2	0.6	83.5	3.3	27.8	1.1	134	5.3	44.5	1.8		
Back EMF constant	Ke	Vpeak/m/s L-L	77.2	15.4	44.5	8.9	154	30.9	89.1	17.8	257	51.4	148	29.7		
@ 25°C±10%		Vpeak/in/sec L-L	1.96	0.39	1.13	0.23	3.92	0.78	2.26	0.45	6.53	1.31	3.77	0.75		
Force constant @ 25°C±10%	Kf	N/Arms	94.5	18.9	54.6	10.9	189	37.8	109	21.8	315	62.9	182	36.3		
		lbf/Arms	21.2	4.2	12.3	2.5	42.5	8.5	24.5	4.9	70.7	14.1	40.8	8.2		
Mechanical Specifications																
Coil Assembly Mass ±15%	Mc	kg		8	.0			12	.0		17.3					
		lbs		17	7.6			26	.5		38.1					
Magnetic Way Type				МС	:015			MC)30		MC050					
Magnetic Way Mass ±15%	Mw	kg/m		2	.5			5.	4			7	.5			
		lbs/in		0.	14			0.3	80		0.42					
Figures of Merit & Additio	nal Data															
Electrical time constant	Te	ms	6.3			8.	6		10.1							
Max.Theoretical Acceleration	Amax	g's	12.0				15	.9			18	3.4				
Magnetic attraction	Fa	kN	3.7			7.	4			12	2.3					
		lbf	827			16	52		2754							
Thermal Resistance																
- coils to external structure	Rth	°C/Watt		0.	48			0.3	33		0.20					
Max. Allowable Coil Temp.		°C		1.	30			13	0		130					

- Notes:

 ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier
- etc. must be considered to determine the achievable acceleration in each application.

 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

Kollmorgen Ironcore Motors

55 Series Ironcore - Non-cooled

PLATINUM® DDL

Rated Performance	Symbol	Units	IC55-015			IC55-030				IC55-050					
Peak force	Fp	N	940					18	75		3125				
		lbf	211				42	22		703					
Continuous force @ Tmax	Fc	N		3!	59		748				1374				
see note ①		lbf		8	1			16	68		309				
Motor constant @ 25°C	Km	N/√W		28	3.9			49	9.7			7	1.0		
Max. Cont. power dissipation	Pc	W		2	19			32	20			5.	30		
Electrical Specifications															
		Winding Code	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7	
Peak current	lp	Arms	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1	
Continuous Current @ Tmax	lc	Arms	3.8	19.0	6.6	32.9	4.0	19.8	6.9	34.3	4.4	21.8	7.6	37.8	
Electrical resistance															
@ 25°C±10%	Rm	Ohms L-L	7.2	7.2 0.29 2.4 0.10			9.7	0.39	3.2	0.13	13.2	0.53	4.4	0.18	
Electrical inductance ±20%	L	mH L-L	45.6 1.8 15.2 0.6			83.5	3.3	27.8	1.1	134	5.3	44.5	1.8		
Back EMF constant	Ke	Vpeak/m/s L-L	77.2 15.4 44.5 8.9			154	30.9	89.1	17.8	257	51.4	148	29.7		
@ 25°C±10%		Vpeak/in/sec L-L	1.96	0.39	1.13	0.23	3.92	0.78	2.26	0.45	6.53	1.31	3.77	0.75	
Force constant @ 25°C±10%	Kf	N/Arms	94.5	18.9	54.6	10.9	189	37.8	109	21.8	315	62.9	182	36.3	
		lbf/Arms	21.2	4.2	12.3	2.5	42.5	8.5	24.5	4.9	70.7	14.1	40.8	8.2	
Mechanical Specifications															
Coil Assembly Mass ±15%	Mc	kg		8	.0			1	2.0		17.3				
		lbs		1	7.6			2	6.5			3	8.1		
Magnetic Way Type				МС	015			М	2030			M	2050		
Magnetic Way Mass ±15%	Mw	kg/m		2	.5			5	5.4			-	7.5		
		lbs/in		0.	.14			0	.30			0	.42		
Figures of Merit & Addition	nal Data														
Electrical time constant	Te	ms	6.3				8	3.6			1	0.1			
Max.Theoretical Acceleration	Amax	g's	12.0			1	5.9			1	8.4				
Magnetic attraction	Fa	kN	3.7			7	7.4			1	2.3				
		lbf	827		1652					2	754				
Thermal Resistance															
- coils to external structure	Rth	°C/Watt	0.48		0.33			0.20							
Max. Allowable Coil Temp.	Tmax	°C		1	30		130			130					

Notes:

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:
 Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
 The RMS current needed to produce this force is simply Fc divided by the force constant Kf
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400 Web site **:** www.DanaherMotion.com

37

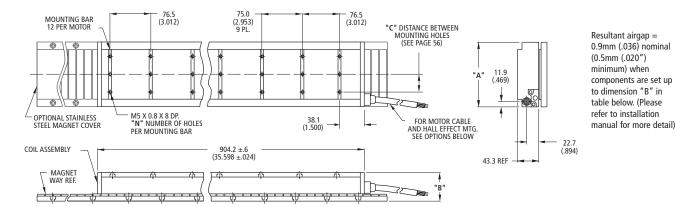
Kollmorgen

55 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units		IC55-	200		IC55-250						
Peak force	Fp	N		125	00			156	625				
		lbf		281	0		3513						
Continuous force @ Tmax	Fc	N		630	3		7496						
see note ①		lbf		141	7		1685						
Motor constant @ 25°C	Km	N/√W		16	3			17	78				
Max. Cont. power dissipation	Pc	W		210	0			25	00				
Electrical Specifications													
		Winding Code	A1	А3	A5	A7	A1	А3	A5	A7			
Peak current	lp	Arms	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1			
Continuous Current @Tmax	lc	Arms	5.0	25.0	8.7	43.3	5.0	24.8	8.6	42.9			
Electrical resistance													
@ 25°C±10%	Rm	Ohms L-L	39.8	1.6	13.3	0.53	48.3	1.9	16.1	0.64			
Electrical inductance ±20%	L	mH L-L	513	20.5	171	6.8	639	25.6	213	8.5			
Back EMF constant	Ke	Vpeak/m/s L-L	1028	206	594	119	1235	247	713	143			
@ 25°C±10%		Vpeak/in/sec L-L	26.1	5.22	15.1	3.02	31.4	6.27	18.1	3.62			
Force constant @ 25°C±10%	Kf	N/Arms	1260	252	727	145	1512	302	873	175			
		lbf / Arms	283	56.6	163	32.7	340	68.0	196	39.3			
Mechanical Specifications													
Coil Assembly Mass ±15%	Mc	kg		59)			7	'3				
		lbs		13	0			1	61				
Magnetic Way Type				MC2	200			МС	250				
Magnetic Way Mass ±15%	Mw	kg/m		26.	.8			33	3.2				
		lbs/in		1.5	0			1.	86				
Figures of Merit & Addition	nal Data												
Electrical time constant	Te	ms		12.	.9			13	3.2				
Max.Theoretical Acceleration	Amax	g's		21.	.6			2	1.8				
Magnetic attraction	Fa	kN	49.3					6	1.5				
		lbf	11072					13	826				
Thermal Resistance													
- coils to external structure	Rth	°C/Watt		0.0	50			0.0	042				
Max. Allowable Coil Temp.	Tmax	°C		13	0			1	30				

- 10 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.


 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

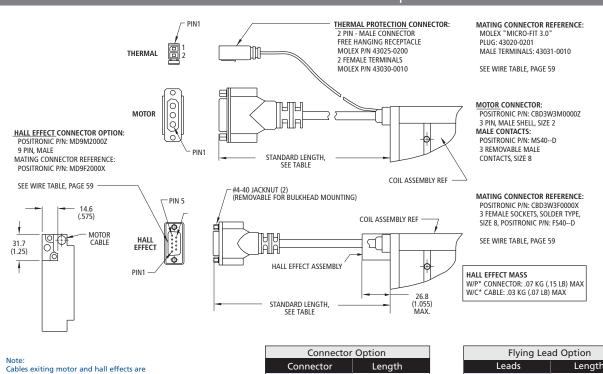
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

PLATINUM® DDL Kollmorgen Ironcore Motors

Non-Cooled IC55-xxx

Notes:


- ① Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

not dynamic flex cables. For high life flex

extension cables, see page 57

Motor Coil Type	Coil Width "A"	Non-Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC55-015	50.0 (1.969) ± 1.0 (.04)	ICXX-015	54.3±0.1 (2.138±.004)	54.6±0.1 (2.150±.004)	1
IC55-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC55-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC55-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC55-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC55-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC55-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC55-250	285.0 (11.220) + 1.5 (.06)	ICXX-250	60.3+0.1 (2.374+.004)	60.6+0.1 (2.386+.004)	7

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Р1

P2

Р3

Tel : 540 633 • 3400 Web site : www.DanaherMotion.com

400 (16)

200 (8)

100 (4)

C1

C2

C3

400 (16)

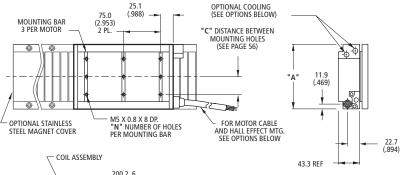
200 (8)

100 (4)

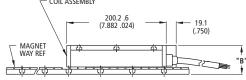
39

Rated Performance	Symbol	Units	IC11	1-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11	-200	IC11	-250
Peak force	Fp	N	3	75	62	25	94	10	12	50	18	75	250	00	31	25
		lbf	8	34	14	11	21	11	28	31	42	22	56	52	70	03
Continuous force @ Tmax	Fc	N	2	96	50)2	75	54	10	06	14	90	199	91	24	10
see note ①		lbf	(56	11	13	16	59	22	26	33	35	44	8	54	42
Motor constant @ 25°C	Km	N/√W	1:	9.3	28	3.6	37	'.3	45	5.0	55	.7	65	.7	71	1.8
Max. Cont. power dissipation	Pc	W	3	19	43	34	57	77	72	24	10	10	129	96	15	91
Electrical Specifications																
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5
Peak current	lp	Arms	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9
Continuous Current @ Tmax	lc	Arms	9.7	16.9	9.9	17.2	9.9	17.1	9.9	17.2	9.8	17.0	9.8	17.0	9.9	17.2
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	1.6	0.53	2.1	0.70	2.8	0.93	3.5	1.2	5.0	1.7	6.4	2.1	7.7	2.6
Electrical inductance ±20%	L	mH L-L	10.3	3.4	16.5	5.5	24.4	8.1	32.1	10.7	47.7	15.9	63.3	21.1	78.9	26.3
Back EMF constant	Ke	Vpeak/m/s L-L	24.8	14.3	41.4	23.9	62.2	35.9	82.9	47.8	124	71.7	166	95.7	199	115
@ 25°C±10%		Vpeak/in/sec L-L	0.63	0.36	1.05	0.61	1.58	0.91	2.11	1.22	3.16	1.82	4.21	2.43	5.05	2.91
Force constant @ 25°C±10%	Kf	N/Arms	30.4	17.6	50.7	29.3	76.2	44.0	102	58.6	152	87.9	203	117	243	141
		lbf / Arms	6.8	3.9	11.4	6.6	17.1	9.9	22.8	13.2	34.2	19.8	45.7	26.4	54.7	31.6
Mechanical Specifications																
Coil Assembly Mass ±15%	Mc	kg	2	.5	3	.6	5	.0	6	.5	9	.4	12	2.3	15	5.2
		lbs	5	.5	7	.9	1	1.0	14	1.3	20).7	27	7.1	33	3.5
Magnetic Way Type			МС	030	МС	050	МС	075	МС	100	МС	150	МС	200	МС	250
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7	.5	10	0.1	12	2.7	20).7	26	5.8	33	3.2
		lbs/in	0.	30	0.	42	0.	.56	0.	71	1.	16	1.	50	1.3	86
Figures of Merit & Additio	nal Data															
Electrical time constant	Te	ms	6	.4	7	.9	8	3.7	9	.2	9	.5	9	.9	10).2
Max.Theoretical Acceleration	Amax	g's	1!	5.3	17	7.7	19	9.2	19	9.6	20).3	20	0.7	21	.0
Magnetic attraction	Fa	kN	1	.4	2	.4	3	.7	4	.9	7	.3	9	.9	12	2.3
		lbf	3	24	54	46	8	21	11	02	16	39	22	214	27	61
Thermal Resistance																
- coils to external structure	Rth	°C/Watt	0.	33	0.	24	0.	.18	0.	15	0.	10	0.0	081	0.0	066
Max. Allowable Coil Temp.	Tmax	°C	1.	30	1:	30	1.	30	1.	30	13	30	1.	30	13	30

Notes:


- 10 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

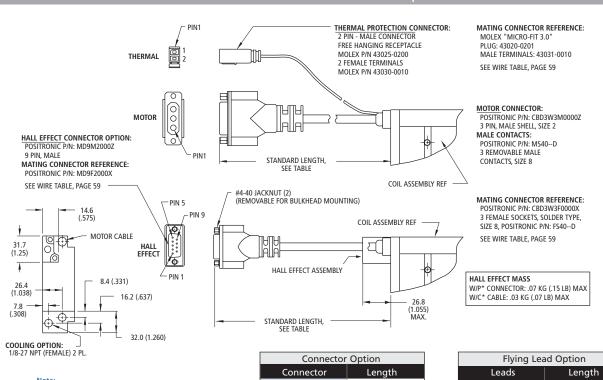
 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

PLATINUM® DDL Kollmorgen Cooled Ironcore Motors

Cooled IC11-xxx

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)


Notes:

- ① Dimensions in mm (inches)
- ② Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Motor Coil Type	Coil Width "A"	Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC11-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC11-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC11-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

P1

P2

Р3

400 (16)

200 (8)

100 (4)

C1

C2

C3

400 (16)

200 (8) 100 (4)

Rated Performance	Symbol	Units	IC22-030		IC22-050			IC22-075			IC22-100				
Peak force	Fp	N		750			1250		1875			2500			
		lbf		169		281			422			562			
Continuous force @Tmax	Fc	N		603		1005			1493			1995			
see note ①		lbf		136			226			336			448		
Motor constant @ 25°C	Km	N/√W		28.3			40.5			52.2		62.5			
Max. Cont. power dissipation	Pc	W		640			868			1154			1438		
Electrical Specifications															
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6	A1	A2	A6	
Peak current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8	
Continuous Current @Tmax	lc	Arms	9.9	19.8	34.3	9.9	19.8	34.3	9.8	19.6	34.0	9.8	19.6	34.0	
Electrical resistance															
@25°C±10%	Rm	Ohms L-L	3.1	0.78	0.26	4.2	1.1	0.35	5.7	1.4	0.48	7.1	1.8	0.59	
Electrical inductance ±20%	L	mH L-L	20.6	5.2	1.7	33.0	8.3	2.8	48.6	12.2	4.1	64.1	16.0	5.3	
Back EMF constant	Ke	Vpeak/m/s L-L	49.7	24.9	14.4	82.9	41.4	23.9	124	62.2	35.9	166	83.1	48.0	
@25°C±10%		Vpeak/in/sec L-L	1.26	0.63	0.36	2.11	1.05	0.61	3.16	1.58	0.91	4.22	2.11	1.22	
Force constant @25°C±10%	Kf	N/Arms	60.9	30.5	17.6	102	50.8	29.3	152	76.2	44.0	203	102	58.7	
		lbf/Arms	13.7	6.8	4.0	22.8	11.4	6.6	34.2	17.1	9.9	45.7	22.9	13.2	
Mechanical Specifications															
Coil Assembly Mass ±15%	Mc	kg		4.8			6.9			9.6			12.5		
		lbs		10.6			15.2			21.2			27.6		
Magnetic Way Type				MC030			MC050			MC075			MC100		
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			12.7		
		lbs/in		0.30			0.42			0.56			0.71		
Figures of Merit & Additio	nal Data														
Electrical time constant	Te	ms		6.6			7.9			8.5			9.0		
Max.Theoretical Acceleration	Amax	g's		15.9			18.5			19.9			20.4		
Magnetic attraction	Fa	kN	2.9			4.9			7.3			9.8			
		lbf	654		1090			1637			2205				
Thermal Resistance															
- coils to external structure	Rth	°C/Watt		0.16		0.12			0.091			0.073			
Max. Allowable Coil Temp.	Tmax	°C		130		130			130			130			

Notes:

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- ④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

Cooled Ironcore Motors

22 Series Ironcore - Water cooled

Kollmorgen

PLATINUM® DDL

Rated Performance	Symbol	Units	IC22-150		IC22-200			IC22-250			
Peak force	Fp	N		3750			5000			6250	
		lbf		843			1124			1405	
Continuous force @ Tmax	Fc	N		2996			4023			4806	
see note ①		lbf	674				904		1080		
Motor constant @ 25°C	Km	N/√W		79.3			93.3				
Max. Cont. power dissipation	Pc	W		2019			2625			3182	
Electrical Specifications											
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6
Peak current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8
Continuous Current @ Tmax	lc	Arms	9.8	19.7	34.1	9.9	19.8	34.3	9.9	19.7	34.2
Electrical resistance											
@ 25°C±10%	Rm	Ohms L-L	9.9	2.5	0.83	12.7	3.2	1.1	15.5	3.9	1.3
Electrical inductance ±20%	L	mH L-L	95.4	23.9	8.0	127	31.6	10.5	158	39.4	13.1
Back EMF constant	Ke	Vpeak/m/s L-L	249	249 124 71.8		332	166	95.7	398	199	115
@ 25°C±10%		Vpeak/in/sec L-L	6.32	3.16	1.82	8.42	4.21	2.43	10.1	5.05	2.91
Force constant @ 25°C±10%	Kf	N/Arms	305	152	87.9	406	203	117	487	243	141
		lbf / Arms	68.5	34.2	19.8	91.3	45.7	26.4	109	54.7	31.6
Mechanical Specifications											
Coil Assembly Mass ±15%	Mc	kg		18.1		23.7					
		lbs		39.9			52.2			64.6	
Magnetic Way Type				MC150			MC200			MC250	
Magnetic Way Mass ±15%	Mw	kg/m		20.7			26.8			33.2	
		lbs/in		1.16			1.50			1.86	
Figures of Merit & Addition	nal Data										
Electrical time constant	Te	ms	9.6			10.0			10.2		
Max.Theoretical Acceleration	Amax	g's	21.1			21.5			21.8		
Magnetic attraction	Fa	kN	14.6			19.7			24.6		
		lbf	3271			4433			5524		
Thermal Resistance											
- coils to external structure	Rth	°C/Watt	0.052		0.040		0.033				
Max. Allowable Coil Temp.	Tmax	°C	130		130		130				

- Notes:

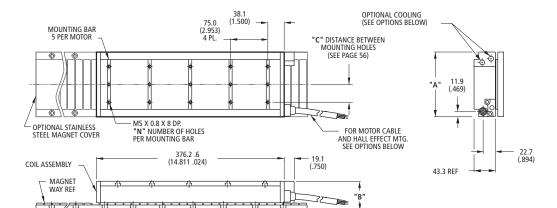
 ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


: 540 www.DanaherMotion.com 633 • 3400 Web site

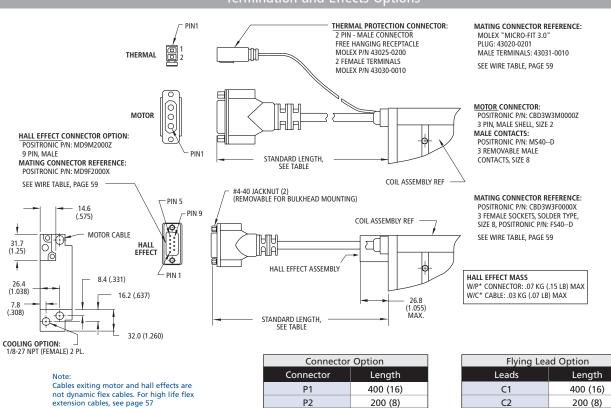
43

PLATINUM® DDL Kollmorgen

Cooled IC22-xxx

Cooled Ironcore Motors

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)


100 (4)

C3

- Notes:
 ① Dimensions in mm (inches)
- ② Tolerances unless otherwise specified: no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coil Type	Coil Width "A"	Cooled1	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC22-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Effects Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Р3

100 (4)

Kollmorgen

Rated Performance	Symbol	Units	IC33-030				IC33-050		IC33-075			
Peak force	Fp	N		1125			1875			2815		
		lbf		253			422			633		
Continuous force @ Tmax	Fc	N		896			1492			2240		
see note ①		lbf		202			335		504			
Motor constant @ 25°C	Km	N/√W		34.5			49.2		64.2			
Max. Cont. power dissipation	Pc	W		955		1296				1721		
Electrical Specifications												
		Winding Code	A1	А3	A5	A1	А3	A5	A1	А3	A5	
Peak current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9	
Continuous Current @ Tmax	lc	Arms	9.8	9.8 29.5 17.0		9.8	29.4	17.0	9.8	29.4	17.0	
Electrical resistance												
@ 25°C±10%	Rm	Ohms L-L	4.7	0.52	1.6	6.4	0.71	2.1	8.5	0.94	2.8	
Electrical inductance ±20%	L	mH L-L	31.0	3.4	10.3	49.5	5.5	16.5	73.1	8.1	24.4	
Back EMF constant	Ke	Vpeak/m/s L-L	74.5	24.8	43.0	124	41.4	71.7	187	62.2	108	
@ 25°C±10%		Vpeak/in/sec L-L	1.89	0.63	1.09	3.16	1.05	1.82	4.74	1.58	2.74	
Force constant @ 25°C±10%	Kf	N/Arms	91.3	30.4	52.7	152	50.7	87.9	229	76.2	132	
		lbf / Arms	20.5	6.8	11.9	34.2	11.4	19.8	51.4	17.1	29.7	
Mechanical Specifications												
Coil Assembly Mass ±15%	Mc	kg		7.3			10.4					
		lbs		16.1			22.9			31.7		
Magnetic Way Type				MC030			MC050			MC075		
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1		
		lbs/in		0.30			0.42			0.56		
Figures of Merit & Additio	nal Data											
Electrical time constant	Te	ms	6.6			7.7			8.6			
Max.Theoretical Acceleration	Amax	g's	15.7			18.4			19.9			
Magnetic attraction	Fa	kN	4.4			7.4			11.0			
		lbf	991			1652			2480			
Thermal Resistance												
- coils to external structure	Rth	°C/Watt		0.11			0.081			0.061		
Max. Allowable Coil Temp.	Tmax	°C	130		130			130				

Notes:

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

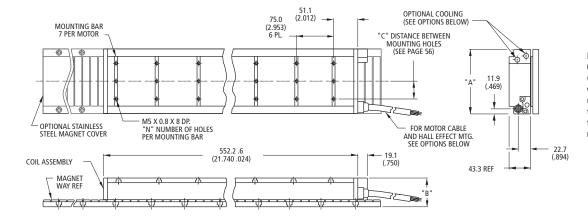
 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400 Web site

Rated Performance	Symbol	Units	IC33-100		IC33-150			IC33-200			IC33-250			
Peak force	Fp	N		3750			5625			7500			9375	
		lbf		843			1265		1686			2108		
Continuous force @ Tmax	Fc	N		3014			4464		5990					
see note ①		lbf		677		1004				1347				
Motor constant @ 25°C	Km	N/√W		76.5		96.9				114				
Max. Cont. power dissipation	Pc	W		2188			3000			3889			4773	
Electrical Specifications														
		Winding Code	A1	A3	A5	A1	А3	A5	A1	А3	A5	A1	A3	A5
Peak current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9
Continuous Current @ Tmax	lc	Arms	9.9	29.7	17.1	9.8	29.3	16.9	9.8	29.5	17.0	9.9	29.6	17.1
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	10.6	1.2	3.5	14.9	1.7	5.0	19.1	2.1	6.4	23.2	2.6	7.7
Electrical inductance ±20%	L	mH L-L	96.2	10.7	32.1	143	15.9	47.7	190	21.1	63.3	237	26.3	78.8
Back EMF constant	Ke	Vpeak/m/s L-L	249	249 82.9 144		373	124	215	497	166	287	596	199	344
@ 25°C±10%		Vpeak/in/sec L-L	6.32	2.11	3.65	9.47	3.16	5.47	12.6	4.21	7.30	15.1	5.05	8.74
Force constant @ 25°C±10%	Kf	N/Arms	304	304 102 176		457	152	264	609	203	352	730	243	422
		lbf/Arms	68.5	22.8	39.5	103	34.2	59.3	137	45.7	79.1	164	54.7	94.8
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg		18.9			27.3			35.7			44.1	
		lbs		41.7			60.2			78.7			97.2	
Magnetic Way Type				MC100			MC150)		MC200)		MC250	
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8			33.2	
		lbs/in		0.71			1.16			1.50			1.86	
Figures of Merit & Addition	nal Data													
Electrical time constant	Te	ms	9.1			9.6			9.9			10.2		
Max.Theoretical Acceleration	Amax	g's	20.2			21.0			21.4			21.7		
Magnetic attraction	Fa	kN	14.7			22.1			29.4			36.8		
		lbf	3305		4957			6609			8262			
Thermal Resistance			5535											
- coils to external structure	Rth	°C/Watt		0.048			0.035			0.027			0.022	
Max. Allowable Coil Temp.	Tmax	°C		130		130			130			130		

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
- The RMS current needed to produce this force is simply Fc divided by the force constant Kf.


 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

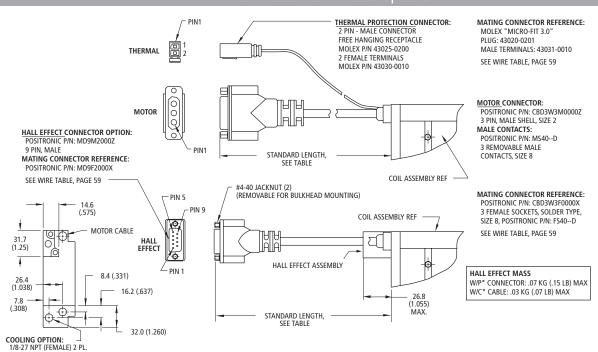
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

PLATINUM® DDL Kollmorgen Cooled Ironcore Motors

Cooled IC33-xxx

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)


Notes:

① Dimensions in mm (inches)

 Tolerances unless otherwise specified: no decimal place ± 0.8 (.03)
 X decimal place ± 0.1 (.004)
 XX decimal place ± 0.05 (.002)

Motor Coil Type	Coil Width "A"	Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC33-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Effects Options

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Connector	Option
Connector	Length
P1	400 (16)
P2	200 (8)
P3	100 (4)

Flying Lead Option						
Leads	Length					
C1	400 (16)					
C2	200 (8)					
C3	100 (4)					

47

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Tel : 540 633 • 3400 Web site : www.DanaherMotion.com

Rated Performance	Symbol	Units		C44-03	0	1	C44-050)	IC44-075			IC44-100		
Peak force	Fp	N		1500			2500		3750				5000	
		lbf	337		562		843			1124				
Continuous force @ Tmax	Fc	N		1201			1990			2980		4015		
see note ①		lbf		270			446			669			902	
Motor constant @ 25°C	Km	N/√W		39.9			56.8			74.0			88.3	
Max. Cont. power dissipation	Pc	W		1280			1721			2283			2917	
Electrical Specifications														
		Winding Code	A1	A2	А3	A1	A2	А3	A1	A2	А3	A1	A2	А3
Peak current	lp	Arms	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.5	55.1
Continuous Current @ Tmax	lc	Arms	9.9	19.7	39.5	9.8	19.6	39.1	9.8	19.5	39.1	9.9	19.8	39.5
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	6.2	1.6	0.39	8.5	2.1	0.53	11.3	2.8	0.71	14.1	3.5	0.88
Electrical inductance ±20%	L	mH L-L	41.3	10.3	2.6	66.1	16.5	4.1	97.3	24.3	6.1	128	32.1	8.0
Back EMF constant	Ke	Vpeak/m/s L-L	99.4	49.7	24.8	166	82.9	41.4	249	124	62.2	331	166	82.9
@ 25°C±10%		Vpeak/in/sec L-L	2.52	1.26	0.63	4.21	2.11	1.05	6.32	3.16	1.58	8.42	4.21	2.11
Force constant @25°C±10%	Kf	N/Arms	122	60.9	30.4	203	102	50.8	305	152	76.2	406	203	102
		lbf/Arms	27.4	13.7	6.8	45.6	22.8	11.4	68.5	34.2	17.1	91.3	45.6	22.8
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg		9.6			13.9		19.2		25.0			
		lbs		21.2			30.6			42.3			55.1	
Magnetic Way Type				MC030		MC050		MC075		MC100				
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			12.7	
		lbs/in		0.30			0.42			0.56			0.71	
Figures of Merit & Addition	nal Data													
Electrical time constant	Te	ms		6.7			7.8		8.6				9.1	
Max.Theoretical Acceleration	Amax	g's		15.9			18.3			19.9			20.4	
Magnetic attraction	Fa	kN	5.9		9.8		14.7		19.6					
		lbf	1322 2203		2203 3305			4406						
Thermal Resistance														
- coils to external structure	Rth	°C/Watt		0.082		0.061		0.046		0.036				
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			130	

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
- 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

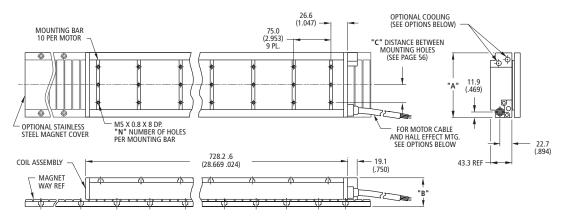
: 540 633 • 3400

Kollmorgen

Rated Performance	Symbol	Units		IC44-150			IC44-200)	IC44-250	
Peak force	Fp	N		7500			10000		125	00
		lbf		1686		2248			2810	
Continuous force @ Tmax	Fc	N		5990		8035			9620	
see note ①		lbf	1343			1806		2165		
Motor constant @ 25°C	Km	N/√W		112			132		143	
Max. Cont. power dissipation	Pc	W	4038			5250		630	54	
Electrical Specifications										
		Winding Code	A1	A2	A3	A1	A2	А3	A2	А3
Peak current	lp	Arms	13.8	27.6	55.3	13.8	27.6	55.2	27.6	55.0
Continuous Current @ Tmax	lc	Arms	9.8	19.6	39.2	9.9	19.8	39.6	19.8	39.5
Electrical resistance										
@ 25°C±10%	Rm	Ohms L-L	19.8	5.0	1.2	25.5	6.4	1.6	7.7	1.9
Electrical inductance ±20%	L	mH L-L	191	47.7	11.9	253	63.3	15.8	78.9	19.7
Back EMF constant	Ke	Vpeak/m/s L-L	497	249	124	663	332	166	397	199
@ 25°C±10%		Vpeak/in/sec L-L	12.6	6.32	3.16	16.8	8.42	4.21	10.1	5.05
Force constant @ 25°C±10%	Kf	N/Arms	609	305	152	812	406	203	487	243
		lbf / Arms	137	68.5	34.2	183	91.3	45.7	109	54.7
Mechanical Specifications										
Coil Assembly Mass ±15%	Mc	kg		36.2			47.4		58.5	
		lbs		79.8			104		129	
Magnetic Way Type				MC150			MC200		MC250	
Magnetic Way Mass ±15%	Mw	kg/m		20.7			26.8		33	.2
		lbs/in		1.16			1.50		1.8	36
Figures of Merit & Addition	nal Data									
Electrical time constant	Te	ms		9.6			9.9		10	.2
Max.Theoretical Acceleration	Amax	g's	21.1			21.5		21	.8	
Magnetic attraction	Fa	kN	29.4			39.4		49	.2	
		lbf		6609			8855		110	061
Thermal Resistance										
- coils to external structure	Rth	°C/Watt		0.026			0.020		0.017	
Max. Allowable Coil Temp.	Tmax	°C		130			130		130	

- Notes:

 ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier
- etc. must be considered to determine the achievable acceleration in each application.

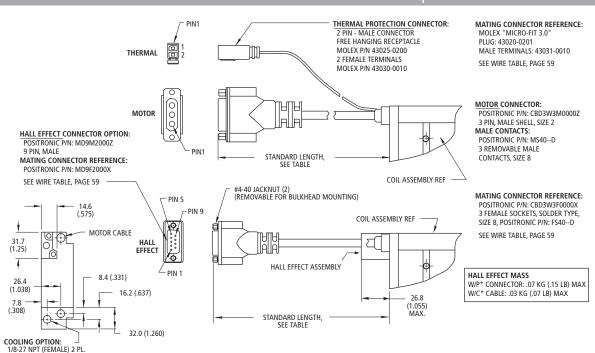

 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

633 • 3400 Web site www.DanaherMotion.com

PLATINUM® DDL Kollmorgen

Cooled IC44-xxx



Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

- Notes:
 ① Dimensions in mm (inches)
- ② Tolerances unless otherwise specified: no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coil Type	Coil Width "A"	Cooled	Dim "B" without cover	Dim "B" w/ Magnet cover	# Holes "N"
IC44-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC44-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC44-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effect Options

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							

Flying Lead Option							
Leads	Length						
C1	400 (16)						
C2	200 (8)						
C3	100 (4)						

Kollmorgen

Rated Performance	Symbol	Units	IC55-030		IC55-050		IC55-075			IC55-100				
Peak force	Fp	N		1875			3125			4690			6250	
		lbf	422		703		1054		1405					
Continuous force @ Tmax	Fc	N		1497			2511		3773		5001			
see note ①		lbf		336			564			848			1124	
Motor constant @ 25°C	Km	N/ W		44.6			63.8			83.1			98.8	
Max. Cont. power dissipation	Pc	W		1591			2188			2917			3621	
Electrical Specifications														
		Winding Code	A1	А3	A5	A1	А3	A5	A1	А3	A5	A1	А3	A5
Peak current	lp	Arms	13.8	69.1	23.9	13.9	69.5	24.1	13.9	69.6	24.1	13.8	69.2	24.0
Continuous Current @ Tmax	lc	Arms	9.8	49.2	17.0	9.9	49.5	17.1	9.9	49.5	17.2	9.9	49.3	17.1
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	7.8	0.31	2.6	10.6	0.42	3.5	14.1	0.56	4.7	17.7	0.71	5.9
Electrical inductance ±20%	L	mH L-L	51.5	2.1	17.2	82.5	3.3	27.5	122	4.9	40.5	161	6.4	53.5
Back EMF constant	Ke	Vpeak/m/s L-L	124	24.8	71.7	207	41.4	120	311	62.2	180	414	82.9	239
@ 25°C±10%		Vpeak/in/sec L-L	3.15	0.63	1.82	5.26	1.05	3.04	7.90	1.58	4.56	10.5	2.11	6.08
Force constant @ 25°C±10%	Kf	N/Arms	152	30.4	87.8	254	50.7	146	381	76.2	220	508	102	293
		lbf/Arms	34.2	6.8	19.7	57.0	11.4	32.9	85.6	17.1	49.4	114	22.8	65.9
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg		12.0			17.3			23.9			31.2	
		lbs		26.5			38.1			52.7			68.8	
Magnetic Way Type				MC030			MC050			MC075	;	MC100		
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			12.7	
		lbs/in		0.30			0.42			0.56			0.71	
Figures of Merit & Additio	nal Data													
Electrical time constant	Te	ms		6.6			7.8			8.6			9.1	
Max.Theoretical Acceleration	Amax	g's		15.9			18.4			20.0			20.4	
Magnetic attraction	Fa	kN		7.4			12.3			18.4			24.5	
		lbf		1652			2754			4132			5508	
Thermal Resistance														
- coils to external structure	Rth	°C/Watt		0.066			0.048		0.036				0.029	
Max. Allowable Coil Temp.	Tmax	°C		130			130			130		130		

Notes:

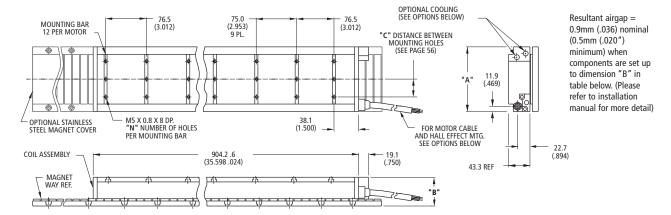
- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:
 Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
 The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the
- Whaxmum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400 Web

Rated Performance	Symbol	Units	IC55-150		IC55	-200	IC55-250		
Peak force	Fp	N	g	375	125	500	15	625	
		lbf	2	108	2810		3513		
Continuous force @ Tmax	Fc	N	7	446	10033		12023		
see note ①		lbf	1674		22	56	27	703	
Motor constant @ 25°C	Km	N/√W	125		14	17	160		
Max. Cont. power dissipation	Pc	W	5000		65	63	79	955	
Electrical Specifications									
		Winding Code	А3	A5	A3	A5	A3	A5	
Peak current	lp	Arms	68.7	23.8	69.4	24.0	69.4	24.0	
Continuous Current @ Tmax	lc	Arms	48.9	16.9	49.4	17.1	49.4	17.1	
Electrical resistance									
@ 25°C±10%	Rm	Ohms L-L	1.0	8.3	1.3	10.6	1.5	12.9	
Electrical inductance ±20%	L	mH L-L	9.5	79.5	12.7	106	15.8	131	
Back EMF constant	Ke	Vpeak/m/s L-L	124	359	166	479	199	574	
@ 25°C±10%		Vpeak/in/sec L-L	3.16	9.11	4.21	12.2	5.05	14.6	
Force constant @ 25°C±10%	Kf	N/Arms	152	439	203	586	243	703	
		lbf / Arms	34.2	98.8	45.7	132	54.7	158	
Mechanical Specifications									
Coil Assembly Mass ±15%	Mc	kg	4	15.1	5	59 73		'3	
		lbs	g	9.4	13	30	161		
Magnetic Way Type			M	C150	МС	200	MC250		
Magnetic Way Mass ±15%	Mw	kg/m	2	20.7	26	5.8	33	3.2	
		lbs/in	1	.16	1.	50	1.	86	
Figures of Merit & Addition	nal Data								
Electrical time constant	Te	ms		9.6	9	.9	10).2	
Max.Theoretical Acceleration	Amax	g's	21.2		21	.6	2.	1.8	
Magnetic attraction	Fa	kN	36.8		49	0.3	6	1.5	
		lbf	8262		110	072	13	826	
Thermal Resistance									
- coils to external structure	Rth	°C/Watt	0	.021	0.0)16	0.0)13	
Max. Allowable Coil Temp.	Tmax	°C		130	13	30	1.	30	

- Notes:

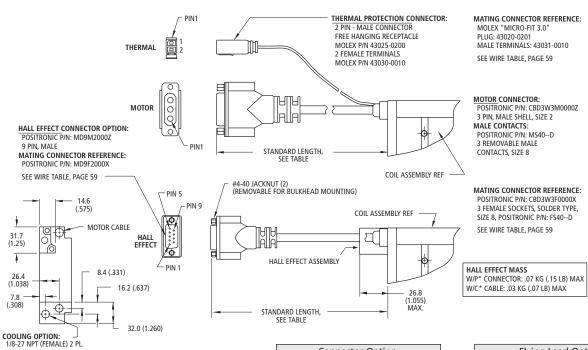

 ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
- Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier
- etc. must be considered to determine the achievable acceleration in each application.

 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

PLATINUM® DDL Kollmorgen Cooled Ironcore Motors

Cooled IC55-xxx



Notes:

- ① Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coil	Coil Width		Dim "B"	Dim "B"	# Holes
Туре	"A"	Cooled	without cover	w/ Magnet cover	"N"
IC55-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC55-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC55-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC55-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC55-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC55-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC55-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effect Options

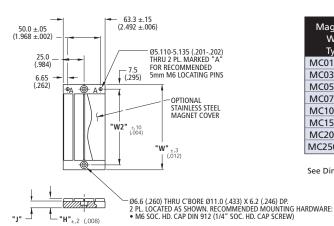
Note

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 57

Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					

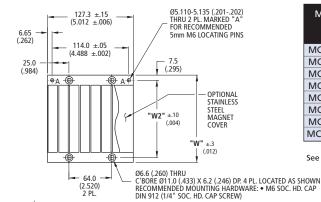
	Flying Lead Option							
	Leads	Length						
	C1	400 (16)						
Ì	C2	200 (8)						
	C3	100 (4)						

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


: 540 633 • 3400 Web site : www.DanaherMotion.com

Ironcore Magnet Ways Kollmorgen PLATINUM® DDL

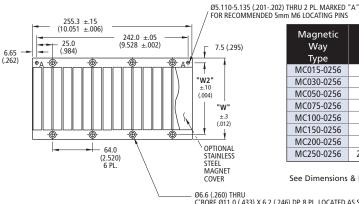
Magnet assemblies are modular and can be installed in multiples of same or alternate lengths. Standard lengths are shown below.


MCxxx-0064

MCxxx-0128

Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"J"	"H" With Cover	"H" Without Cover
MC015-0064	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0064	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0064	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0064	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0064	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0064	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0064	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0064	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

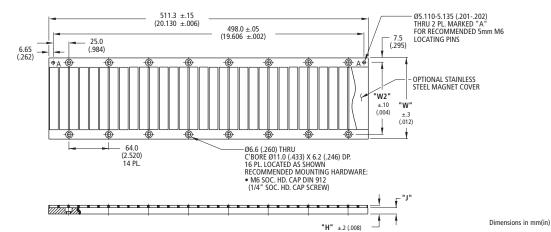


Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"J"	"H" With Cover	"H" Without Cover
MC015-0128	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0128	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0128	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0128	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0128	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0128	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0128	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0128	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

MCxxx-0256

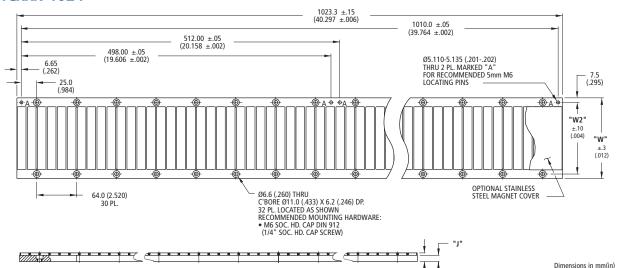
"H" ±.2 (.008)


Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"」"	"H" With Cover	"H" Without Cover
MC015-0256	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0256	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0256	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0256	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0256	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0256	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0256	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0256	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

06.6 (.260) THRU C'BORE 011.0 (.433) X 6.2 (.246) DP. 8 PL. LOCATED AS SHOWN RECOMMENDED MOUNTING HARDWARE: • M6 SOC. HD. CAP DIN 912 (14" SOC. HD. CAP SCREW)

Dimensions in mm(in)


MCxxx-0512

Magnetic Way	Assembly Width	Mounting Hole Width		"H" With	"H" Without
Type	"W"	"W2"	"J"	Cover	Cover
MC015-0512	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0512	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0512	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0512	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0512	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0512	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0512	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0512	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

MCxxx-1024

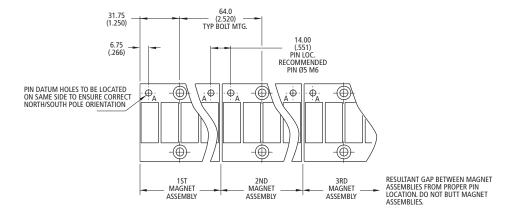
Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"J"	"H" With Cover	"H" Without Cover
MC015-1024	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-1024	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-1024	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-1024	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-1024	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-1024	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-1024	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-1024	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

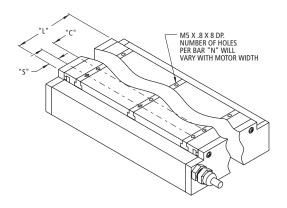
55

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

"H" ±.2 (.008)


Tel : 540 633 • 3400 Web site : www.DanaherMotion.com

Typical Installation of Multiple Ironcore Magnet Assemblies


Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512, 1024 mm.

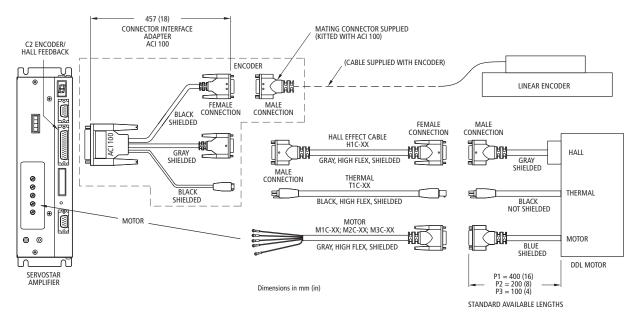
Multiple magnet assemblies can be installed to obtain the desired length.

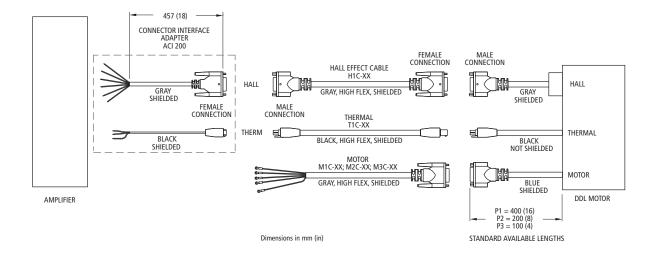
Shown below is the method to mount multiple assemblies.


Typical Mounting Bar Lengths & Mounting Holes Tabulation

Motor Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	"S"
ICXX-015	1	ON CENTER	15 (.59)	7.5 (.295)
ICXX-030	2	16.0 (0.630)	30 (1.18)	7.0 (.276)
ICXX-050	2	36.0 (1.417)	50 (1.97)	7.0 (.276)
ICXX-075	3	32.0 (1.260)	75 (2.95)	5.5 (.217)
ICXX-100	3	36.0 (1.417)	100 (3.94)	14.0 (.551)
ICXX-150	5	32.0 (1.260)	150 (5.91)	11.0 (.433)
ICXX-200	6	36.0 (1.417)	200 (7.87)	10.0 (.394)
ICXX-250	7	38.0 (1.496)	250 (9.84)	11.0 (.433)

Dimensions in mm(in)


250 Width Magnet Ways with 3 rows of Mounting Holes


Magnet	Number
Way	of Holes
MC250-0064	3
MC250-0128	6
MC250-0256	12
MC250-0512	24
MC250-1024	48

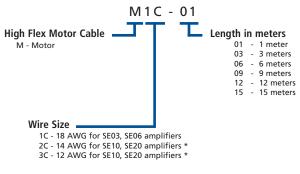
PLATINUM® DDL Kollmorgen High Flex Cable Sets

High Flex Cables for use with SERVOSTAR®

High Flex Cables for Generic Applications

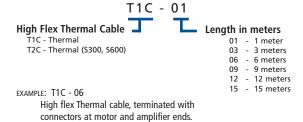
Cables are designed for minimum life cycle of millions of cycles under ideal conditions. Actual field application conditions may or may not produce the cable life described here in.

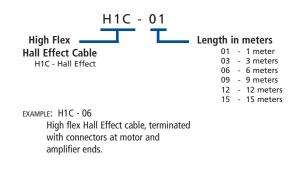
To ensure longest possible cable life under dynamic conditions, cables should be relaxed 24 hours before use by hanging freely at its mid-point. Cable is ready when very little memory is present. Cable should be installed in the 'plane of original flexure.' Cable should be installed with lowest possible mechanical tension. Avoid torsional bending. Minimum recommended dynamic bend radius is 15x largest cable diameter used in cable track; use a large bend radius whenever possible. Clearance between cables and track should be a minimum of 20% of the cable diameter. Use of a clamp or nylon cable tie that creates localized stress within the cable track must be avoided. Minimum distance from the clamping point to the start of the bend radius must be 25x the largest cable diameter used in the track. Cable track manufacturer should be consulted for application assistance.

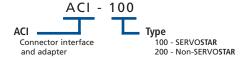

Minimum recommended dynamic bend radius 15x cable diameter

Cable Assembly	AWG	Wire Diameter	Min. Dynamic Radius (15x wire Ø)
M1C	18	11.0mm (.430in)	165mm (6.5in)
M2C	14	12.6mm (.495in)	185mm (7.3in)
M3C	12	14.2mm (.560in)	215mm (8.5in)
T1C	22	6.0mm (.235in)	90mm (3.5in)
H1C	26	6.0mm (.235in)	90mm (3.5in)

- High Flex cable designed for dynamic, continuous flexing applications
- Cable track compatible
- Molded, high reliability connectors
- Oil resistant PVC jacket
- 105°C / 600V motor cable, 105°C / 300V Hall Effect and Thermal Sensor cable
- CE compliant, fully shielded low impedance cable and connectors
- Fully tested, color coded, shipped with schematics
- Complete cable system for simple and reliable Plug-and-Play installation

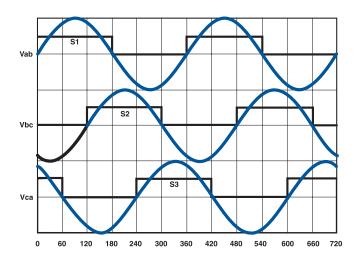

Standard lengths of 1, 3, 6, 9, 12 and 15 meters available. For other lengths, consult a Danaher Motion representative.


Model Numbering System



EXAMPLE: M1C - 06

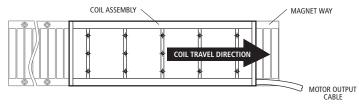
High flex motor cable, terminated with connectors at motor and amplifier ends, 18 AWG, for SE03 and SE06.



* For application assistance regarding cable selection for these and other higher current rated amplifiers, contact a Danaher Motion representative.

Motor Wire Table SEE TABLE BELOW FOR AWG DIA		Hall Effect Wire Table 26 AWG 6.0 DIA (.24")		Thermal Protection Wire Table Thermistor 26 AWG 3.8 (.15")				
Pin Number	Color or Wire No.	Function	Pin Number	Color	Function	Pin	Color	Transition Point
1	Red	ØA	1	Gray	+5 Vdc	1	Black / White	120°C (IC/ICD)
2	White	ØB	2	Green	S 1			90°C (IL)
3	Black	ØC	3	Yellow	52	2	Black / White	120°C (IC/ICD)
Connector Shell	Grn/Yel	GND	4	Brown	S 3			90°C (IL)
Connector Shell	Violet	Shield	5	White	Return		see no	te 2
			Shell	Shield	Shield			

note $_{\scriptsize 0}$ Ground and shield connection at shell: first make / last break



• Motor BEMF phases A,B,C relative to Hall effect devices \$1,\$2,\$3 with coil travel direction towards the motor output cable assembly exit as shown below.

note @TIC-X extender cable is shielded

IL WIRE TABLE				
AWG	APPROX. CBL. DIA.			
18	5.6mm (.22 IN)			
ICD WIRE TABLE				
AWG	APPROX. CBL. DIA.			
22	5.1mm (.20 IN)			
IC WIRE TABLE	NON-COOLED			
AWG	APPROX. CBL. DIA			
18	5.6mm (.22 IN)			
18	5.8mm (.22 IN)			
14	8.9mm (.27 IN)			
18	5.8mm (.22 IN)			
14	6.9mm (.27 IN)			
10	7.9mm (.31 IN)			
IC WIRE TABLE COOLED (AC)				
	AWG 18 CD WIRE TABLE AWG 22 IC WIRE TABLE AWG 18 18 14 18 14 10			

IC WIRE TABLE COOLED (AC)				
WINDING CODE	AWG	APPROX. CBL. DIA		
A1	18	5.6mm (.22 IN)		
A2	14	8.9mm (.27 IN)		
A3	10	7.9mm (.31 IN)		
A5	14	8.9mm (.27 IN)		
A6	12	7.9mm (.31 IN)		

MOTOR WINDING CONFIGURATION WITH TRAVEL DIRECTION AS SHOWN

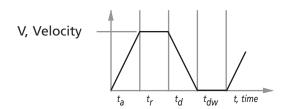
Magnet pole pitch:

Both Ironcore (IC) and Ironless (IL) feature the same pole pitch, which is 32 mm (360 electrical degrees).

note

The diagrams above refer to both Ironless and Ironcore motors

To size a Linear Motor, you will need to:


- 1. Define a Move Profile
- 2. Define the Load
- 3. Size the Motor and the Amplifier

From the move profile, we can calculate the maximum speed and the maximum acceleration/deceleration. From the load we can calculate all of the forces at constant speed and using the move profile all the dynamic forces during acceleration and deceleration. Once a motor is selected, the weight of the moving parts of the motor are added to the moving weight to calculate a total Peak Force and a total RMS force. The motor should be able to deliver the peak force and the calculated RMS force should be higher than the continuous force to ensure a known safety margin. The coil temperature rise can also be calculated to ensure that it is lower than the intended maximum temperature rise.

The maximum bus voltage and continuous and peak current can also be calculated and compared to the selected amplifier to be sure the calculated performances can be achieved.

1. Move Profile

Triangular/Trapezoidal

	U	nits
	SI	English
S _m - Move displacement	meters	inches
t _a - Acceleration Time	seconds	seconds
t _r - Time run at constant speed	seconds	seconds
t _d - Deceleration Time	seconds	seconds
t _{dw} - Dwell Time	seconds	seconds
V _m - Max Velocity	meter/sec.	inches/sec
A _m - Acceleration	meter/sec ²	inches/sec ²
D _m - Deceleration	meter/sec ²	inches/sec ²

EXAMPLE: Move 0.1 meter in 100 msec assuming $t_a = t_d$ and $t_r = 0$, (assume triangular move)

Max Speed:
$$V_m = 2 \cdot S_m / (t_a + t_d + 2 \cdot t_r)$$

 $V_m = 2 \cdot 0.1 / (100E-3)$
= 2 meter/sec

Max Acceleration/Deceleration

	011/12 0 0 0 1 0 1 0 1 1 0 1 1
Acceleration	$A_m = Vm / ta$
	$A_{m} = 2 / 50E-3$
	= 40 meter/sec
	A_{m} "g" = $A_{m}/9.81$
	a (g) = 40 / 9.81
	= 4.08 g
Deceleration	$D_{m} = V_{m}/t_{d}$
	$D_{m} = 2/50E-3$

 D_{m} "g" = $D_{m}/9.81$ d(g) = 40/9.81= 4.08 q

= 40 meter/sec²

	Uni	ts
2. Load	SI	English
F _{ext} - External Force only	N	lbf
(Cutting force, etc.)		
F _{acc} - Acceleration Force only	N	lbf
F _r - Run Force at constant speed	N	lbf
F _{dec} - Deceleration Force only	N	lbf
F _{am} - Max. Acceleration Force	N	lbf
F _{dm} - Max. Deceleration Force	N	lbf
F _{dw} - Dwell Force	N	lbf
F _{rms} - RMS Force	N	lbf
μ - Coefficient of Friction (bearing support)	_	_
M _I - Load Mass	kg	lbs
M _C - Coil Mass	kg	lbs
M _{cb} - Counterbalance Mass	kg	lbs
F _a - Magnetic Attraction Force	N	lbf
CB - Counterbalance of load in % θ - Angle of Linear Displacement with horizontal	-	-
(0°= horizontal, 90° vertical)	degrees	degrees
g - Gravity coefficient	9.81 m/s ²	386 in/s ²
n - Number of motors in parallel	_	_

BASIC FORMULAS*:

We assume a general case where we have n motors solidly coupled pushing the load and a possible counterbalance weight Mcb (Mostly for vertical displacement).

Example of Coefficient of Friction μ :

Linear bearing w/ balls	0.002 - 0.00
Linear bearing w/ rollers	0.005
Steel on oiled steel	0.06
Steel on dry steel	0.2
Steel on concrete	0.3

Counterbalance Weight:

 $M_{ch} = MI \cdot CB/100$

Acceleration Force only:

Facc =
$$[(M_I/n) \cdot (1 + CB/100) + M_c] \cdot Am$$

Run Force at constant speed:

$$F_r = (M_l / n + M_c) \bullet g \bullet SIN(q) + m \bullet COS(q) - (Mcb/n) \bullet g + F_a \bullet \mu + F_{ext}/n$$

Deceleration Force only:

$$F_{dec} = [(M_1/n) \cdot (1 + CB/100) + M_c] \cdot D_m$$

Maximum Acceleration Force:

$$F_{am} = F_{acc} + F_r$$

Maximum Deceleration Force:

$$F_{dm} = F_{dec} - F_r$$

Dwell Force:

$$F_{dw} = (M_I / n + M_c) \bullet g \bullet [SIN(\theta)] - (M_{cb} / n) \bullet g$$

RMS Force:

$$F_{rms} = \sqrt{\frac{F_{am}^2 \bullet t_a + F_r^2 \bullet t_r + F_{dm}^2 \bullet t_d + F_{dw}^2 \bullet t_{dw}}{t_a + t_r + t_d + t_{dw}}}$$

* All calculations are given in SI units. For English units use weight in lbs instead of mass • g.

3. Size the Motor and Amplifier

EXAMPLE:

Moving Weight:	MI = 0.5kg
Number of Motors:	n = 1
Horizontal Move:	$\theta = 0$
Counterbalance Force:	$M_{ch} = 0$
External Force:	$F_{ext} = 0$
Friction Coefficient:	$\mu = 0.01$

Assume same move as above with a Dwell Time of 50 ms.

Run Force at Constant Speed:	$F_r = 0.5 \bullet 9.81 \bullet 0.0$	01=0 .05 N
Acceleration Force only:	$F_a = 0.5 • 40$	= 20 N
Deceleration Force only:	$F_{d} = 0.5 \cdot 40$	= 20 N
Maximum Accel Force:	$F_{am} = 20 + 0.05$	= 20.05 N
Maximum Decel Force:	$F_{dm} = 20 - 0.05$	= 19.95 N

Rms Force:

$$F_{\text{rms}} = \sqrt{\frac{(20.05)^2 \bullet (50E-3) + (19.95)^2 \bullet (50E-3)}{100E-3 + 50E-3}}$$

$$F_{rms} = 16.3 N$$

Motor Sizing:

If we select an ironless motor for smoothest possible move we can use Motor IL060-30A1. This motor has a coil mass of 0.21 kg and no attractive force. By adding that weight in equations above, we need an additional Force of $0.21 \cdot 40 \cdot 0.01 = 0.084$ N. So Peak Force is 20.05 + 0.08 = 28.45 N and RMS force: 23.19 N. This motor will have a safety factor of $(38-23.19) \cdot 100/38 = 39\%$.

Sizing the Amplifier :	Units	
	SI	English
I _a - Max. Acceleration Current	Α	Α
I _r - Run Current	Α	Α
I _d - Max Deceleration Current	Α	Α
I _{dw} - Dwell Current	Α	Α
I _{rms} - RMS Current	Α	Α
K _f - Force Constant	N/A	lbf/A
R _m - Motor Electrical Resistance	Ohms L-L	Ohms L-L
K _e - Back EMF Constant	Vpeak/m/s	Vpeak/in/s
V _{bus} - Bus Voltage	VDC	VDC
L - Electrical Inductance	H L-L	H L-L
Max Acceleration Current:	$I_a = F$	am/K _f
Run Current at constant Speed:	I _r =	F _r /K _f
Max Deceleration Current only:	$I_d = F$	dm ^{/K} f
Dwell Current:	$I_{dw} =$	F _{dw} /K _f
RMS Current:	I _{rms} =	F _{rms} /K _f

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and displains all warranties are proposally including the product for a practice of marchantality and times for a particular number of the product for a practice of marchantality and times for a particular number of the product for a practice of marchantality and times for a particular number of the product for a practice of marchantality and times for a particular number of the product for a practice of the product for a particular number of the product for a particular num

BUS VOLTAGE:

If we assume a sine wave drive with a phase advance φ (degrees) and full conduction, the minimum bus voltage (see Fig. 1) is:

$$V_{h1} = 2.4$$
 (Volts)

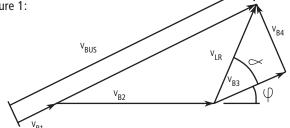
$$V_{h2} = K_e \bullet V_m$$

$$V_{b3} = 1.225 \cdot R_{m,hot} \times I_{rms}$$

$$V_{b4} = 7.6953 \bullet L \bullet I_{rms} \bullet V_m / Pitch$$

$$\alpha V = ARCTANGENT (V_{h4}/V_{h3})$$

$$V_{lr} = \sqrt{V_{h3}^2 + V_{h4}^2}$$


$$V_{hre} = V_{h2} + VIr \bullet COS(\alpha v + \varphi)$$

$$V_{bim} = V_{lr} \bullet SIN(\alpha v + \varphi)$$

$$V_{bus} = V_{b1} + \sqrt{V_{bre}^2 + V_{bim}^2}$$

Note: If there is no Phase advance take φ =0°. Using an amplifier with Phase advance such as Kollmorgen SERVOSTAR® gives you up to 30% more speed for same bus voltage.

THERMAL CONSIDERATIONS:

	Units		
	SI	English	
$\Delta\theta$ - Coil increase of temperature	°C	°F	
R _{th} - Thermal Resistance	°C/W	°F/W	
K _m - Motor Constant	N/ \sqrt{W}	lbf/ √W	
P _{out} - Output Power	W	W	

Coil Temperature rise

$$\Delta\theta = R_{th} \bullet (F_{rms}/Km)^2$$

Resistance of Coil hot (copper)

$$R_{m,hot} = \frac{R_{ambient} (234.5 + \theta_{hot})}{(234.5 + \theta_{hot})}$$

Power Losses $P_{lrms} = \Delta\theta/R_{th} = \frac{(\theta_{hot} - \theta_{ambient})}{R_{th}}$

Output Power

$$P_{out}(max) = F_{am} \bullet V_m$$

Example: In above example with:

$$R_{th} = 1.61 \, ^{\circ}\text{C/W}$$
 $K_m = 4.7 \, \text{N/} \, \sqrt{\text{W}},$

Coil Temperature rise: $\Delta\theta = 1.61 \cdot (23.19/4.7)^2 = 39.2 \, ^{\circ}\text{C}$ Power Losses PI = 39.2/1.61 = 24.34 WattsMax output Power $P_{out}(max) = 57$ Watts.

The Use of the Motor Constant K_m :

Cognizance of the heat load being generated by the linear motor is an important consideration in the application of any linear motor. Linear motors are direct drive devices, typically mounted very close to the moving load. Therefore, any heat generated by the linear motor needs to be managed to avoid affecting the process or workpiece that the moving load is carrying. The motor constant $\mathbf{K}_{\mathbf{m}}$ is a powerful parameter that can be used to determine this heat load. K_m equals:

$$K_m = \frac{F}{\sqrt{P_c}} \qquad \text{where the RMS force F is in Newtons,} \\ \text{the RMS heat load Pc is in watts} \\ \text{and Km is in units of N/ } \sqrt{W}$$

The motor constant, K_M , allows us to determine motor performance capabilities such as shown in the following two examples. In the first example, we use K_M to calculate, for a given force, how many watts of generated heat are dissipated by the motor's coil assembly. In the second, we use K_M to determine the maximum RMS force developed by the motor when the dissipated power is limited to some value.

1. An application requires a continuous thrust force of 200 Newtons. The IC11-050 ironcore motor is a good candidate, having a continuous force rating of 276 Newtons and a K $_{\rm M}$ of 32.0 N/ $\sqrt{\rm W}.$ Therefore, since resistance rises 1.405 times at 130°C from the ambient value at 25°C, and since resistance is the square root denominator of K $_{\rm M}$, we must write our equation as follows,

Force =
$$\frac{K_{M}}{\sqrt{Factor}}$$
 $\sqrt{Power (dissipated)}$

$$200 = \frac{32.0}{\sqrt{1.405}} \sqrt{\text{Watts}}$$

Watts
$$= 54.9$$

This value of watts is the power or heat generated by the motor. It is interesting to note that for the same application, a larger IC11-100 ironcore motor, with a K $_{\rm M}$ of 49.1 N/ $\sqrt{\rm W}$, would dissipate only 23.3 watts for the same force, F.

2. The same application requires that no more than 45 watts are to be dissipated by the motor into the surrounding structure and environment. What is the maximum RMS force that the IC11-050 motor may produce while not exceeding this power limit?

Maximum RMS Force =
$$\frac{32.0}{\sqrt{1.405}}$$
 $\sqrt{45}$ = 181 N

Therefore, if the motor delivers no more than 181 N of thrust force on an RMS basis, then this same motor will not dissipate more than 45 watts.

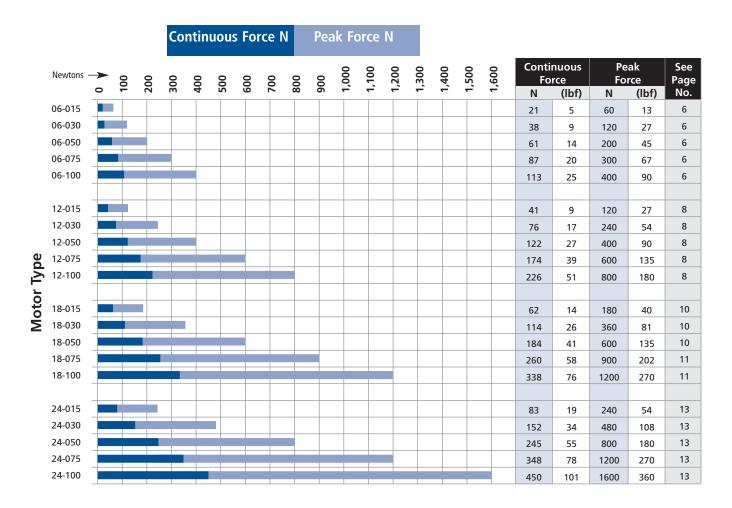
Continuous Force Fc as a Function of Ambient Temperature

In our data sheets the continuous rated force Fc is the RMS force that the motor can supply continuously 100% of the time, assuming the ambient temperature is 25 degrees C and with the coils achieving a maximum temperature of 130 degrees C. At higher (or lower) ambient temperatures, the Fc of the motor must be adjusted by a factor that is determined by the following equation:

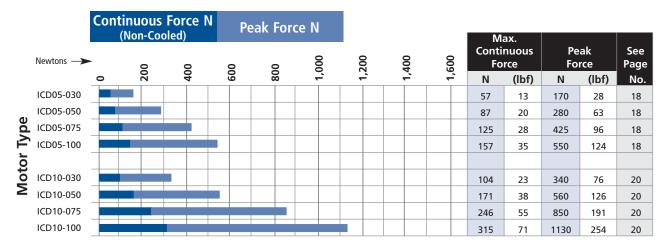
Factor =
$$\sqrt{\frac{(130 - \theta_{Amb})}{105}}$$

where θ_{Amb} = Ambient Temperature

This factor vs. ambient temperature works out as:


5 °C	10	15	20	25	30	35	40	45
1.091	1.069	1.047	1.024	1	0.976	0.951	0.926	0.900

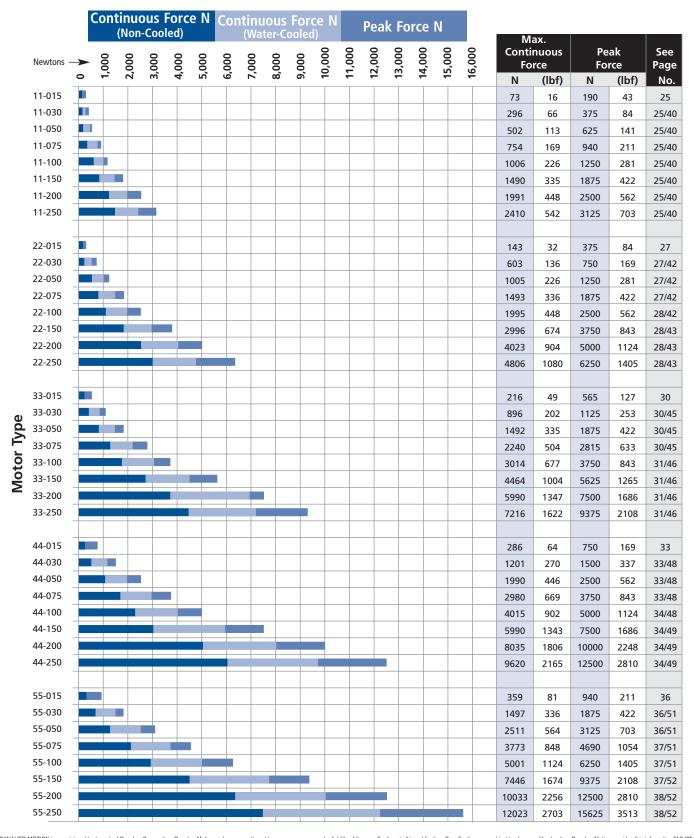
Customer:	Project Name:
Contact:	Axis Name:
Telephone:	Prepared by:
fax:	E-Mail:
Move Axis Orientation	Horizontal Vertical
Typical Move	mm in
<i>,</i> ,	<u> </u>
Total Travel Length [Typical Move Time s	
• •	meters/sec inches/sec
Maximum Speed [Minimum Speed [meters/sec inches/sec
Max. Acceleration	
or Accel/Decel Time s	meters/sec ² inches/sec ² g
Dwell Time s	
Move Profile trapezoidal	triangular S-curve
	triangular S-curve
Loads	
Friction Coefficient	
Max Load Mass [kg lb
Thrust force [N lbf
Is this thrust force present during Accel/Decel?	Yes No
Precision	
Repeatability [μm inch
Absolute Accuracy [μm inch
Resolution	μm inch
Encoder Feedback	
Signal period µ	<u></u>
Resolution	lines/mm lines/in
Electronic Interpolation Yes	No If Yes, Multiplication Factor:
Environment	
Ambient Temperature [°C ° F
Max Permissible Temperature Rise [°C ° F
Clean Room Environment	Yes No If yes Class:
Is Water or Air cooling permissible?	Yes No
Vacuum?	Yes No Pressure:
Amplifier & Power Supply	
3	/DC
Max Current A	Amps
Power Supply	Single Phase Three phase
VoltageV	50 Hz 60 Hz


Also see MOTIONEERING®, Danaher Motion's Application Sizing Program.

PLATINUM® DDL Kollmorgen

Ironless Linear Motors

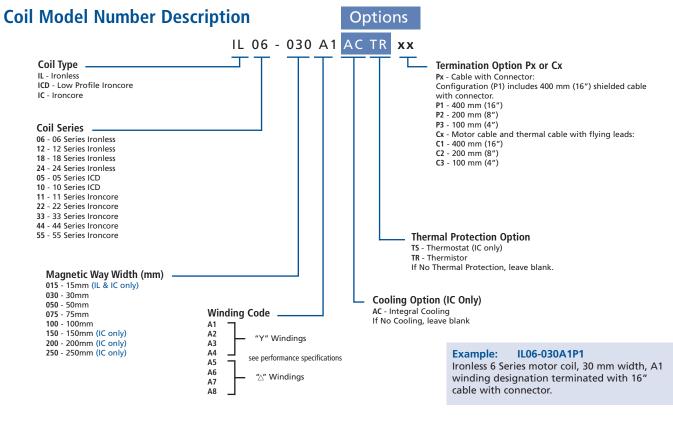
ICD Linear Motors

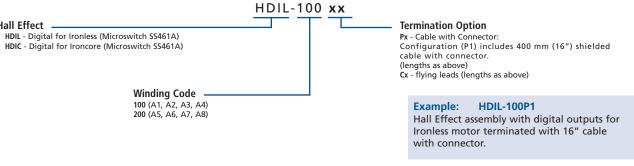

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Tel : 540 633 • 3400 Web

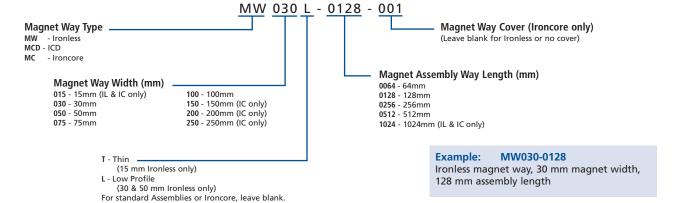
Web site : www.DanaherMotion.com

Ironcore Selection Guide Kollmorgen PLATINUM® DDL


Ironcore Linear Motors


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel : 540 633 • 3400 Web site : www.DanaherMotion.com


PLATINUM® DDL Kollmorgen Ordering Information

Hall Effect Assembly Model Number Description

Magnetic Way Model Number Description

Find additional PLATINUM® DDL product information

DanaherMotion.com offers many new tools to help serve your needs. We've developed an inuitive Web-based system to increase your knowledge of motion control, search our vast product selection by product attribute (using our New Product Advisors), and easily locate your nearest Danaher Motion distributor or Sales office.

Visit www.DanaherMotion.com for more information and see our latest tools.

KOLLMORGEN

DANAHER MOTION is a trademark.

Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

©2004 Danaher Motion. IG-10K OCG/BH 1104 200406-09 N102

FOR IMMEDIATE ASSISTANCE:

Internet:	www.Danahei	rMotion.com			
In USA, Canada	Phone:	1-540-633-3400	In Europe:	Phone:	+46 (0) 44 24 67 00
or Mexico:	Fax:	1-540-639-4162		Fax:	+46 (0) 44 24 40 85
	E-mail:	DMAC@danahermotion.com		E-mail:	helpdesk@tollo.com
	Literature:	litrequest@danahermotion.com	or write:	Danaher Motion	
or write:	Danaher Moti	on		Tollo Linear AB	
203A West Rock Road Radford, VA 24141 USA		ck Road		Box 9053	
			SE-291 09 Kristianstad Sweden		
In UK:	Phone:	0800 975 1000	or	Phone:	+49 (0) 70 22 504-0
	Sales Fax:	0800 975 1001		Fax:	+49 (0) 70 22 541-68
	E-mail:	LMSEurope@danahermotion.com	or write:	Danaher Linear Gm	bH
or write:	Danaher Linea	ar Motion Systems		Nürtinger Strasse 7	0
	Fishleigh Road, Roundswell Business Park			D-72649 Wolfschlugen Germany	
	Barnstaple		Elsewhere:	Phone:	1 (516) 883-8937
	EX31 3UD UK			Fax:	1 (516) 883-7109
atalogue request:	catalogues@d	lanahermotion.com			